Skip to main content

Open-source Python library to compute landscape metrics

Project description

PyPI version fury.io Conda Downloads Documentation Status Build Status Coverage Status GitHub license

PyLandStats

Open-source Pythonic library to compute landscape metrics within the PyData stack (NumPy, pandas, matplotlib...)

Citation: Bosch M. 2019. "PyLandStats: An open-source Pythonic library to compute landscape metrics". PLOS ONE, 14(12), 1-19. doi.org/10.1371/journal.pone.0225734

Features

  • Read GeoTiff files of land use/cover:

    import pylandstats as pls
    
    ls = pls.read_geotiff('data/vaud_g100_clc00_V18_5.tif')
    
    ls.plot_landscape(legend=True)
    

    landscape-vaud

  • Compute pandas data frames of landscape metrics at the patch, class and landscape level:

    class_metrics_df = ls.compute_class_metrics_df(metrics=['proportion_of_landscape', 'edge_density'])
    class_metrics_df
    
    class_val proportion_of_landscape edge_density
    1 7.702 4.459
    2 92.298 4.459
  • Analyze the spatio-temporal evolution of landscapes:

    input_fnames = [
        'data/vaud_g100_clc00_V18_5.tif',
        'data/vaud_g100_clc06_V18_5a.tif',
        'data/vaud_g100_clc12_V18_5a.tif'
    ]
    
    sta = pls.SpatioTemporalAnalysis(
        input_fnames, metrics=[
            'proportion_of_landscape',
            'edge_density',
            'fractal_dimension_am',
            'landscape_shape_index',
            'shannon_diversity_index'
        ], classes=[1], dates=[2000, 2006, 2012], 
    )
    
    fig, axes = plt.subplots(1, 3, figsize=(15, 5))
    for metric, ax in zip(
        ['proportion_of_landscape', 'edge_density', 'fractal_dimension_am'], axes):
        sta.plot_metric(metric, class_val=1, ax=ax)
    fig.suptitle('Class-level metrics (urban)')
    

    spatiotemporal-analysis

  • Zonal analysis of landscapes

See the documentation and the pylandstats-notebooks repository for a more complete overview.

Installation

The easiest way to install PyLandStats is with conda:

$ conda install -c conda-forge pylandstats

which will install PyLandStats and all of its dependencies. Alternatively, you can install PyLandStats using pip:

$ pip install pylandstats

Nevertheless, note that in order to define zones by vector geometries in ZonalAnalysis, or in order to use the the BufferAnalysis and SpatioTemporalBufferAnalysis classes, PyLandStats requires geopandas, which cannot be installed with pip. If you already have the dependencies for geopandas installed in your system, you might then install PyLandStats with the geo extras as in:

$ pip install pylandstats[geo]

and you will be able to use the aforementioned features (without having to use conda).

Development install

To install a development version of PyLandStats, you can first use conda to create an environment with all the dependencies and activate it as in:

$ conda create -n pylandstats -c conda-forge geopandas matplotlib-base rasterio scipy openblas
$ conda activate pylandstats

and then clone the repository and use pip to install it in development mode

$ git clone https://github.com/martibosch/pylandstats.git
$ cd pylandstats/
$ pip install -e .

Acknowledgments

  • The computation of the adjacency matrix in transonic has been implemented by Pierre Augier (paugier).
  • With the support of the École Polytechnique Fédérale de Lausanne (EPFL)
  • The Corine Land Cover datasets used for the test datasets were produced with funding by the European Union

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pylandstats-2.3.0.tar.gz (49.5 kB view details)

Uploaded Source

File details

Details for the file pylandstats-2.3.0.tar.gz.

File metadata

  • Download URL: pylandstats-2.3.0.tar.gz
  • Upload date:
  • Size: 49.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for pylandstats-2.3.0.tar.gz
Algorithm Hash digest
SHA256 0fd2b54a7b8eda3e7bb5fe5ebd0f16e73d8c037228c7c1b0811ed905d1a61e96
MD5 2a4b9c9e42e954c65984b9e84e0c590d
BLAKE2b-256 f026b914ce124013d659491c76744e5c290262087205c514316bffafb63998c5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page