Skip to main content

PyO3 bindings and Python interface to skani, a method for fast fast genomic identity calculation using sparse chaining.

Project description

🐍⛓️🧬 Pyskani Stars

PyO3 bindings and Python interface to skani, a method for fast fast genomic identity calculation using sparse chaining.

Actions Coverage License PyPI Bioconda AUR Wheel Python Versions Python Implementations Source Mirror Issues Docs Changelog Downloads

🗺️ Overview

skani[1] is a method developed by Jim Shaw and Yun William Yu for fast and robust metagenomic sequence comparison through sparse chaining. It improves on FastANI by being more accurate and much faster, while requiring less memory.

pyskani is a Python module, implemented using the PyO3 framework, that provides bindings to skani. It directly links to the skani code, which has the following advantages over CLI wrappers:

  • pre-built wheels: pyskani is distributed on PyPI and features pre-built wheels for common platforms, including x86-64 and Arm64 UNIX.
  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pyskani as a dependency to your project, and stop worrying about the skani binary being present on the end-user machine.
  • sans I/O: Everything happens in memory, in Python objects you control, making it easier to pass your sequences to skani without having to write them to a temporary file.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to be used in a standard pipeline.

🔧 Installing

Pyskani can be installed directly from PyPI, which hosts some pre-built CPython wheels for x86-64 Unix platforms, as well as the code required to compile from source with Rust:

$ pip install pyskani

In the event you have to compile the package from source, all the required Rust libraries are vendored in the source distribution, and a Rust compiler will be setup automatically if there is none on the host machine.

🔖 Citation

Pyskani is scientific software, and builds on top of skani. Please cite skani if you are using it in an academic work, for instance as:

pyskani, a Python library binding to skani (Shaw & Yu, 2023).

💡 Examples

📝 Creating a database

A database can be created either in memory or using a folder on the machine filesystem to store the sketches. Independently of the storage, a database can be used immediately for querying, or saved to a different location.

Here is how to create a database into memory, using Biopython to load the record:

database = pyskani.Database()
record = Bio.SeqIO.read("vendor/skani/test_files/e.coli-EC590.fasta", "fasta")
database.sketch("E. coli EC590", bytes(record.seq))

For draft genomes, simply pass more arguments to the sketch method, for which you can use the splat operator:

database = pyskani.Database()
records = Bio.SeqIO.parse("vendor/skani/test_files/e.coli-o157.fasta", "fasta")
sequences = (bytes(record.seq) for record in records)
database.sketch("E. coli O157", *sequences)

🗒️ Loading a database

To load a database, either created from skani or pyskani, you can either load all sketches into memory, for fast querying:

database = pyskani.Database.load("path/to/sketches")

Or load the files lazily to save memory, at the cost of slower querying:

database = pyskani.Database.open("path/to/sketches")

🔎 Querying a database

Once a database has been created or loaded, use the Database.query method to compute ANI for some query genomes:

record = Bio.SeqIO.read("vendor/skani/test_files/e.coli-K12.fasta", "fasta")
hits = database.query("E. coli K12", bytes(record.seq))

🔎 See Also

Computing ANI for closed genomes? You may also be interested in pyfastani, a Python package for computing ANI using the FastANI method developed by Chirag Jain et al.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the MIT License.

The skani code was written by Jim Shaw and is distributed under the terms of the MIT License as well. See vendor/skani/LICENSE for more information. Source distributions of pyskani vendors additional sources under their own terms using the cargo vendor command.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original skani authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

📚 References

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyskani-0.1.3.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

pyskani-0.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-cp313-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.13 Windows x86-64

pyskani-0.1.3-cp312-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyskani-0.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyskani-0.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-cp312-cp312-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyskani-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

pyskani-0.1.3-cp311-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyskani-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyskani-0.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyskani-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

pyskani-0.1.3-cp310-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyskani-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyskani-0.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-cp39-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyskani-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyskani-0.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-cp38-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyskani-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyskani-0.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyskani-0.1.3-cp37-none-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.7 Windows x86-64

pyskani-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyskani-0.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file pyskani-0.1.3.tar.gz.

File metadata

  • Download URL: pyskani-0.1.3.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3.tar.gz
Algorithm Hash digest
SHA256 cb8b05f18f12d49a989d21d8bfe9180c9ddb00c595eb8481a3532716b94c4db3
MD5 d2a5925d291732744d9833b90e7885f1
BLAKE2b-256 452306fd9b6a88c9129ccc4b535d4be2342908ed18928d31eca79ddec62560a6

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8eb6a703edc2f5c9ada8142cb3fc9374255d672296450f50a606e7abc8f963db
MD5 c4e7394087f4ced4230da444ba8530ea
BLAKE2b-256 18a1fa89e7d58499f1ec04f30fb543168a3a84bf82f5c7053bda13aea2f63f74

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c60e607a16f4e65eb682b278ca29793ef05ec8d712be9795582fc85d342db3ca
MD5 2796f5b171166ce93e84f51e5e98197b
BLAKE2b-256 ae3522a14dbc08667e67cd5b9588daa345552bec25f18fa8b9e5292fdb3c871c

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 10dca63f62f4dbdb8c11e94b14fef06926c2b908432469e00dc343efa8d996af
MD5 9de6de2259c5ad6d44161318fe1f518e
BLAKE2b-256 c3f784feba77c3ca15f54b7b7c50869ca4b44bdcc435e8c53eab4c598c2d1e46

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba4bf338ad79e07fbb31e91dbbc914d6f1c9d8bf02a11e008410887b153cf524
MD5 d9cc21659819741d9c9fa0905be466a6
BLAKE2b-256 ff2cf5dc5e629836cd398d6e384de04d8da3a3554a40aae2dae3a1bc15ef4114

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09c274d37a7231b8899233c5ebfdea04930c66142ebcb1897fa1a3fa922afee2
MD5 14f50ce03abf370b4c2c5b23290d4aac
BLAKE2b-256 c565c4fe418c9a26bb1b33a123f76ee58e2e0cbc809a07df374f59ebf1288fff

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp313-none-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.3-cp313-none-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3-cp313-none-win_amd64.whl
Algorithm Hash digest
SHA256 925832640cb88cd190120527c9fee793b463b2d8eae60b8fbfe5a5e758112a07
MD5 5a302f2f8b3f9efa4687907efbfff34e
BLAKE2b-256 40475ae6671596aebeb5757cdffa86fd58c51a54165390467497bea326205b66

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp312-none-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.3-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 4e96842a7925d7481f5accda8ece65ef9e4f54ae16af886940002e467c195411
MD5 486574270967e65704ecea88360b5ae7
BLAKE2b-256 db756ca3e6e6960df2e92f462a2cab7e966574f0a64e002dceb29d47b8e7d3b1

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cce9038264c9ed24b4cd2e48a62694607c57d647ac34a98c490c08fd052a3dbf
MD5 3924342422c997a01af3a22cc58a3bf6
BLAKE2b-256 a8d903a45899317596cbaa973e153491156ba235cef96267a98d062ec0d21ee9

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ab40e45f238692dbbe6acacf75ec2b9af5a4497c5189d1791dd0a1c5267723d
MD5 e32ba2bb9a3a7bddd0789a8e7973e350
BLAKE2b-256 c84a3d5e1e1e992d8ae6bbe15781ae6c1ce047f2a41cf7323f14b52fc521ace0

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a7360952cd7bf16f477e39e0ae351836c29e5dec508aca9bee266e34b670c95
MD5 896e80783ac76b0ba5a8eab09389f9cf
BLAKE2b-256 0e566f21c59488ae1d7e2d734f8f79e7bd17dcb3e5f0c700b351bed9be49f90e

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 37b3f7f6443683d84bfea81d6a3f5c8555858c422423aa377ab24cd359cb2625
MD5 6dfcab2ed14d7ba866e8306b2afacbd1
BLAKE2b-256 67ae2a48714d20feb87002b3426e52b7fdb511b9780c8a0dbab9ce0c9452b5d9

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp311-none-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.3-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ee609180e06d7a88aef296d5cd46352d359b10189c7bb936600415da99edfc47
MD5 7575f528697c691a979ba6b3a850805d
BLAKE2b-256 13d0ce27162409179634bdb13d58ed2e7ffb416d151a1209e799a420b79562cd

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3f7714a7c741cfb84b3c20cbfbc1165c2e988ede9e8ee3b42ddd81037ba9eee
MD5 831f2bbb44ea8499beebb1197072cae0
BLAKE2b-256 542b0dedd8c7e54417615eb067269feb4e23c60bb433b93c6822f3182454623e

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 092ff516f597d6e5bf43e4ba0ba08bf267aef60a07455a5c0a71c1aa2f0061fc
MD5 758899f9ce6f8681da18bb05c1e55af6
BLAKE2b-256 5a93281ac47c74e4eee10bb7139b087ffcca25d7280728399362c6f58b2f6635

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c061c2a87dae8cfd49b725ab05acb9701c36b17aa1e48ec1acd10bc7a19d8e96
MD5 c4d883abbb9e1bf405b68103ee86e7e7
BLAKE2b-256 2a6394bbfef33f9531e92ab0331f52c2aa54d90b8484fdccae4f2913f4d9643e

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 84f64330411eb3ffd6379d29e485add8b9eebcecc7352125a888b62fb0bb6ee4
MD5 864debd526679a8707ed9ae970835ea5
BLAKE2b-256 d56d3c94c171922e68658f35d5498d6884eba4744b5c9a6da26a93da635b435d

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp310-none-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.3-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 8d4157fdf5fd65ac1ab8b80b4fd9f7f28af37d1df238121975f55d4bd3e7190b
MD5 a4a0b669b32af73b5639e48ad7310d45
BLAKE2b-256 10ede87ee588016f26b2a7789dfac99545232bac87a632347b740021417ddc86

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e73d922b0260df89473597606c02d4ebfbcd752655d5e774e48c062b282c863f
MD5 76e791ea4bc13b00475be19b7ec83c2b
BLAKE2b-256 729f8277aed72357b9ba266b11b6a9aebb5c838c2e53ca3a9df0296abe0e3fce

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8511db0f2cee361a90d759a347fd802a32cc7451e769daae529c182cd36560f7
MD5 d1fcc0449acb71886703c18367aa4ba3
BLAKE2b-256 455cd9135b767b93577b50664ef3b79c07759be43bae344d77e61c521a726b78

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp39-none-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.3-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 d323440bb3f58b24f5af681860559a49d790dc83c2b278be0333290379cbcf51
MD5 37344eab6597029f346d9ce05aaae69a
BLAKE2b-256 caf0cd39593859724925e5b5d2f3bf85d4a007665fbb2942a8c87367627a1906

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 334158facf2b11aa264b7dacbfe373dc491b6cc5965a499d286061e39c195086
MD5 b41d3400baf9c5965690f5992a65ad6c
BLAKE2b-256 e47e4b09ab5c65f83de68a15e7b8c560e10d38e0204c0599dfbef2fc60fb74a1

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5853a9de70213f86e40dde09af5b5ea6fc7e4aaca3fd8c7d3c148cdcb6a18cb2
MD5 934c4e554aacebbebafee86a942d7a11
BLAKE2b-256 ce113efa17261ff4c11b0b54cf7c17497c269686b99533f906490428808dc9e4

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp38-none-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.3-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2283cb76f8f7dffdb3e606b315aafb181e764c32d160a293da30b099839484f2
MD5 89259023180d104f6b6b69cf62157003
BLAKE2b-256 188903281100579f4c12778cb794482f3a7789abef7f00e6e3e4cc483494dc1d

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10ff3ca514d2663fd320b4d43f73b99d1fa37276d1529983ed40067b1dcc2ad1
MD5 e7380f3d58bfe485212d69a191879f15
BLAKE2b-256 234d66b392ddd3d5d85d3b78db85181b715ac06b1d54dad73b5759d4f75030a6

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45518a37ee5af97e9d419a30a5b7ab7c304d48c90bb23fc1deba6549e62606f9
MD5 8bf2d610b366a6b1904e09b0c6779532
BLAKE2b-256 4d5795686b38af87ef3db9b8c614484958672566d32da25f4e1769d1c1340edd

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.3-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.7

File hashes

Hashes for pyskani-0.1.3-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 ab1e9036d84064594583caa3353921af5eff8c709623eb9602871ed0bdad1177
MD5 0402259799324cd998de465dc2d9fb9f
BLAKE2b-256 5514eef10b2e1962802aa53216130d62ed5aca97a19f0fc60e415f0bfe82dcfe

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 957fd1a9dd7ab5bc02d3beed817987a46962a3e9f11e32765553585f7a87a90a
MD5 d9dbad0f98e8941f799d84ed366f0936
BLAKE2b-256 b63e89689409262811cdee13dd97ea322ceb1a77a4cc22c58f4c8cf34a00c0c9

See more details on using hashes here.

File details

Details for the file pyskani-0.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ca9837d43de0dce129d3864994968fbb80f8cca248bebeae5fb7e5b588a968a
MD5 a94295e6276d68370604c3f4dc4b48ab
BLAKE2b-256 9b6a4ae130452c3c3b26d34fcacc069b69d397bf8ec8efaadc90c7353d66df41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page