Skip to main content

Python bindings for whisper.cpp

Project description

pywhispercpp

Python bindings for whisper.cpp with a simple Pythonic API on top of it.

License: MIT Wheels PyPi version Downloads

Table of contents

Installation

From source

  • For the best performance, you need to install the package from source:
pip install git+https://github.com/absadiki/pywhispercpp

Pre-built wheels

  • Otherwise, Basic Pre-built CPU wheels are available on PYPI
pip install pywhispercpp # or pywhispercpp[examples] to install the extra dependencies needed for the examples

[Optional] To transcribe files other than wav, you need to install ffmpeg:

# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg

# on Arch Linux
sudo pacman -S ffmpeg

# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg

# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg

# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg

NVIDIA GPU support

To Install the package with CUDA support, make sure you have cuda installed and use GGML_CUDA=1:

GGML_CUDA=1 pip install git+https://github.com/absadiki/pywhispercpp

CoreML support

Install the package with WHISPER_COREML=1:

WHISPER_COREML=1 pip install git+https://github.com/absadiki/pywhispercpp

Vulkan support

Install the package with GGML_VULKAN=1:

GGML_VULKAN=1 pip install git+https://github.com/absadiki/pywhispercpp

OpenBLAS support

If OpenBLAS is installed, you can use GGML_BLAS=1. The other flags ensure you're installing fresh with the correct flags, and printing output for sanity checking.

GGML_BLAS=1 pip install git+https://github.com/absadiki/pywhispercpp --no-cache --force-reinstall -v

OpenVINO support

Follow the the steps to download correct OpenVINO package (https://github.com/ggerganov/whisper.cpp?tab=readme-ov-file#openvino-support).

Then init the OpenVINO environment and build.

source ~/l_openvino_toolkit_ubuntu22_2023.0.0.10926.b4452d56304_x86_64/setupvars.sh 
WHISPER_OPENVINO=1 pip install git+https://github.com/absadiki/pywhispercpp --no-cache --force-reinstall

Note that the toolkit for Ubuntu22 works on Ubuntu24

** Feel free to update this list and submit a PR if you tested the package on other backends.

Quick start

from pywhispercpp.model import Model

model = Model('base.en')
segments = model.transcribe('file.wav')
for segment in segments:
    print(segment.text)

You can also assign a custom new_segment_callback

from pywhispercpp.model import Model

model = Model('base.en', print_realtime=False, print_progress=False)
segments = model.transcribe('file.mp3', new_segment_callback=print)
  • The model will be downloaded automatically, or you can use the path to a local model.
  • You can pass any whisper.cpp parameter as a keyword argument to the Model class or to the transcribe function.
  • Check the Model class documentation for more details.

Examples

CLI

Just a straightforward example Command Line Interface. You can use it as follows:

pwcpp file.wav -m base --output-srt --print_realtime true

Run pwcpp --help to get the help message

usage: pwcpp [-h] [-m MODEL] [--version] [--processors PROCESSORS] [-otxt] [-ovtt] [-osrt] [-ocsv] [--strategy STRATEGY]
             [--n_threads N_THREADS] [--n_max_text_ctx N_MAX_TEXT_CTX] [--offset_ms OFFSET_MS] [--duration_ms DURATION_MS]
             [--translate TRANSLATE] [--no_context NO_CONTEXT] [--single_segment SINGLE_SEGMENT] [--print_special PRINT_SPECIAL]
             [--print_progress PRINT_PROGRESS] [--print_realtime PRINT_REALTIME] [--print_timestamps PRINT_TIMESTAMPS]
             [--token_timestamps TOKEN_TIMESTAMPS] [--thold_pt THOLD_PT] [--thold_ptsum THOLD_PTSUM] [--max_len MAX_LEN]
             [--split_on_word SPLIT_ON_WORD] [--max_tokens MAX_TOKENS] [--audio_ctx AUDIO_CTX]
             [--prompt_tokens PROMPT_TOKENS] [--prompt_n_tokens PROMPT_N_TOKENS] [--language LANGUAGE] [--suppress_blank SUPPRESS_BLANK]
             [--suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS] [--temperature TEMPERATURE] [--max_initial_ts MAX_INITIAL_TS]
             [--length_penalty LENGTH_PENALTY] [--temperature_inc TEMPERATURE_INC] [--entropy_thold ENTROPY_THOLD]
             [--logprob_thold LOGPROB_THOLD] [--no_speech_thold NO_SPEECH_THOLD] [--greedy GREEDY] [--beam_search BEAM_SEARCH]
             media_file [media_file ...]

positional arguments:
  media_file            The path of the media file or a list of filesseparated by space

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Path to the `ggml` model, or just the model name
  --version             show program's version number and exit
  --processors PROCESSORS
                        number of processors to use during computation
  -otxt, --output-txt   output result in a text file
  -ovtt, --output-vtt   output result in a vtt file
  -osrt, --output-srt   output result in a srt file
  -ocsv, --output-csv   output result in a CSV file
  --strategy STRATEGY   Available sampling strategiesGreefyDecoder -> 0BeamSearchDecoder -> 1
  --n_threads N_THREADS
                        Number of threads to allocate for the inferencedefault to min(4, available hardware_concurrency)
  --n_max_text_ctx N_MAX_TEXT_CTX
                        max tokens to use from past text as prompt for the decoder
  --offset_ms OFFSET_MS
                        start offset in ms
  --duration_ms DURATION_MS
                        audio duration to process in ms
  --translate TRANSLATE
                        whether to translate the audio to English
  --no_context NO_CONTEXT
                        do not use past transcription (if any) as initial prompt for the decoder
  --single_segment SINGLE_SEGMENT
                        force single segment output (useful for streaming)
  --print_special PRINT_SPECIAL
                        print special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.)
  --print_progress PRINT_PROGRESS
                        print progress information
  --print_realtime PRINT_REALTIME
                        print results from within whisper.cpp (avoid it, use callback instead)
  --print_timestamps PRINT_TIMESTAMPS
                        print timestamps for each text segment when printing realtime
  --token_timestamps TOKEN_TIMESTAMPS
                        enable token-level timestamps
  --thold_pt THOLD_PT   timestamp token probability threshold (~0.01)
  --thold_ptsum THOLD_PTSUM
                        timestamp token sum probability threshold (~0.01)
  --max_len MAX_LEN     max segment length in characters
  --split_on_word SPLIT_ON_WORD
                        split on word rather than on token (when used with max_len)
  --max_tokens MAX_TOKENS
                        max tokens per segment (0 = no limit)
  --audio_ctx AUDIO_CTX
                        overwrite the audio context size (0 = use default)
  --prompt_tokens PROMPT_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --prompt_n_tokens PROMPT_N_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --language LANGUAGE   for auto-detection, set to None, "" or "auto"
  --suppress_blank SUPPRESS_BLANK
                        common decoding parameters
  --suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS
                        common decoding parameters
  --temperature TEMPERATURE
                        initial decoding temperature
  --max_initial_ts MAX_INITIAL_TS
                        max_initial_ts
  --length_penalty LENGTH_PENALTY
                        length_penalty
  --temperature_inc TEMPERATURE_INC
                        temperature_inc
  --entropy_thold ENTROPY_THOLD
                        similar to OpenAI's "compression_ratio_threshold"
  --logprob_thold LOGPROB_THOLD
                        logprob_thold
  --no_speech_thold NO_SPEECH_THOLD
                        no_speech_thold
  --greedy GREEDY       greedy
  --beam_search BEAM_SEARCH
                        beam_search

GUI

If you prefer a Graphical User Interface, you can use the pwcpp-gui command which will launch A simple graphical interface built with PyQt5.

  • First you need to install the GUI dependencies:
pip install pywhispercpp[gui]
  • Then you can run the GUI with:
pwcpp-gui

The GUI provides a user-friendly way to:

  • Select audio files
  • Choose models
  • Adjust basic transcription settings
  • View and export transcription results

Assistant

This is a simple example showcasing the use of pywhispercpp to create an assistant like example. The idea is to use a Voice Activity Detector (VAD) to detect speech (in this example, we used webrtcvad), and when some speech is detected, we run the transcription. It is inspired from the whisper.cpp/examples/command example.

You can check the source code here or you can use the class directly to create your own assistant:

from pywhispercpp.examples.assistant import Assistant

my_assistant = Assistant(commands_callback=print, n_threads=8)
my_assistant.start()

Here, we set the commands_callback to a simple print function, so the commands will just get printed on the screen.

You can also run this example from the command line.

$ pwcpp-assistant --help

usage: pwcpp-assistant [-h] [-m MODEL] [-ind INPUT_DEVICE] [-st SILENCE_THRESHOLD] [-bd BLOCK_DURATION]

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -ind INPUT_DEVICE, --input_device INPUT_DEVICE
                        Id of The input device (aka microphone)
  -st SILENCE_THRESHOLD, --silence_threshold SILENCE_THRESHOLD
                        he duration of silence after which the inference will be running, default to 16
  -bd BLOCK_DURATION, --block_duration BLOCK_DURATION
                        minimum time audio updates in ms, default to 30

Advanced usage

  • First check the API documentation for more advanced usage.
  • If you are a more experienced user, you can access the exposed C-APIs directly from the binding module _pywhispercpp.
import _pywhispercpp as pwcpp

ctx = pwcpp.whisper_init_from_file('path/to/ggml/model')

Discussions and contributions

If you find any bug, please open an issue.

If you have any feedback, or you want to share how you are using this project, feel free to use the Discussions and open a new topic.

License

This project is licensed under the same license as whisper.cpp (MIT License).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywhispercpp-1.3.2.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

pywhispercpp-1.3.2-cp313-cp313-win_amd64.whl (958.8 kB view details)

Uploaded CPython 3.13Windows x86-64

pywhispercpp-1.3.2-cp313-cp313-win32.whl (817.1 kB view details)

Uploaded CPython 3.13Windows x86

pywhispercpp-1.3.2-cp313-cp313-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pywhispercpp-1.3.2-cp313-cp313-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

pywhispercpp-1.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pywhispercpp-1.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pywhispercpp-1.3.2-cp313-cp313-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pywhispercpp-1.3.2-cp312-cp312-win_amd64.whl (958.8 kB view details)

Uploaded CPython 3.12Windows x86-64

pywhispercpp-1.3.2-cp312-cp312-win32.whl (817.0 kB view details)

Uploaded CPython 3.12Windows x86

pywhispercpp-1.3.2-cp312-cp312-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pywhispercpp-1.3.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

pywhispercpp-1.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pywhispercpp-1.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pywhispercpp-1.3.2-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pywhispercpp-1.3.2-cp311-cp311-win_amd64.whl (958.7 kB view details)

Uploaded CPython 3.11Windows x86-64

pywhispercpp-1.3.2-cp311-cp311-win32.whl (815.9 kB view details)

Uploaded CPython 3.11Windows x86

pywhispercpp-1.3.2-cp311-cp311-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pywhispercpp-1.3.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

pywhispercpp-1.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pywhispercpp-1.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pywhispercpp-1.3.2-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pywhispercpp-1.3.2-cp310-cp310-win_amd64.whl (958.3 kB view details)

Uploaded CPython 3.10Windows x86-64

pywhispercpp-1.3.2-cp310-cp310-win32.whl (815.2 kB view details)

Uploaded CPython 3.10Windows x86

pywhispercpp-1.3.2-cp310-cp310-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pywhispercpp-1.3.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

pywhispercpp-1.3.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pywhispercpp-1.3.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pywhispercpp-1.3.2-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pywhispercpp-1.3.2-cp39-cp39-win_amd64.whl (953.3 kB view details)

Uploaded CPython 3.9Windows x86-64

pywhispercpp-1.3.2-cp39-cp39-win32.whl (816.1 kB view details)

Uploaded CPython 3.9Windows x86

pywhispercpp-1.3.2-cp39-cp39-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pywhispercpp-1.3.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

pywhispercpp-1.3.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pywhispercpp-1.3.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pywhispercpp-1.3.2-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file pywhispercpp-1.3.2.tar.gz.

File metadata

  • Download URL: pywhispercpp-1.3.2.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pywhispercpp-1.3.2.tar.gz
Algorithm Hash digest
SHA256 0ef4cc4b5d4eb5cc6f6d323bcd963455a8f8d78f370dde2c0c61d2831e89ca25
MD5 e5e9a6a1c44210d0d56eee210485d03d
BLAKE2b-256 53f9702fd6eae3099b6c437d2c12bb865805dd86ef4f86a58daff532eb4a594d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 51e2b91df2ed3271431913c336b2e86e37dbf60801429d4185ac54bba7fa323f
MD5 e128c5c7585df5b0633f1158b2ac573a
BLAKE2b-256 7f091e6b295c701e9783a232e6e22446582bc2d54366cdeb74c16501e055769b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.3.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 817.1 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pywhispercpp-1.3.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 a2557d2d9f3f062c9b621b5979f1765b617420dc54532672a695cd2f4b392230
MD5 a541b5b90bb20b01162d0ae2612a7c4c
BLAKE2b-256 811b16a38e524d5a6bcdcc436b09f1d84c91cb6c3b39fd43b19148ff5397c111

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a15ffbc1d773eb626a9947911d304b70b5ad94020dae42727ceb5d89a3e0d76e
MD5 529c4edaa2b074c8ce4e02d7cdf8c43f
BLAKE2b-256 c474fc47447f882cd96ed2425a865bd94d92a2441beb59ff405301890d232e76

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ee57559910b10955dafb813a568841a6f5a548dbb19a862d204f567ef1a350fa
MD5 5a622a696d2b18aac91a275f3e3551c8
BLAKE2b-256 d819c8bb9439edf4c0c425a55ca1d78c027b10f6d19cebee773fc986be875e71

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fa2a4ee9e64c59e85881bea628937fc5b98df3bae45777609bdabfc10fbfdbb6
MD5 2d1d23cad08e200f0a5edf3ff643fe32
BLAKE2b-256 53a5615011b44602c22c83810f7216edb6674c8ca99970cf9f580b9c90a7c31d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a56ece855a86d71d244e7def78a086ba4e4f97d0bf10f9bcf28c57884702c727
MD5 03a70da51d655d37bdb23dd3fbdeaacf
BLAKE2b-256 12d4e6f4a77ac9f519f3e1a611f06c142156cf1e78083fbd6fb71e8b99cb0de4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 956d4d7da316b25ffd46216357f05422519f60bfe3449e404d61a801b6ecbde1
MD5 34bcfa5bd93ee284d12b8f7aa213109f
BLAKE2b-256 e904df983f59a6b6ba33dda7f492c33e12f4e7aac5a2c29e9b361823b551ac86

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 76f64a631380b88dff1d073ec61c5229e92cf7b704856ee918992b0538b6de5a
MD5 cbd5f2f2153fb3e2be950bb5f287c6c5
BLAKE2b-256 78831b728380d4c502bb8bf39f47db528a56591868e0b1f2dc4081899a35bdb4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.3.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 817.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pywhispercpp-1.3.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e1e324a118a1a33ed5ad075f36598d407e1396d3aff308af4edbee4c650abb80
MD5 86496f45b22704459f46496e9c70dcaa
BLAKE2b-256 0cd0e66363c375135e335b089012921eb56a94354a7b6c8a8b37ce8f9bcf4ccd

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d0bd07be721087071157e2d6f8443f77fddb0b6efeb9b0c2240890409a059ce1
MD5 a1b14fa833ab8ff74d14f09ec625ea05
BLAKE2b-256 9d3e0e3757489eca9e856ebbcd22e4f763629d63aa7d757262c877f85ff6e8e6

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 58a4b8cd66a0b2da7ee6559947acbc2f0091612b00fddfb6075b4d2dae90ac16
MD5 5ce0c7e5dd51b43c6591ffc561cbaae5
BLAKE2b-256 0b88e83d9b790c9398c59d86d1783f0276aaa271f8a64e3d18fbc354f3e0ea72

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c364a3c3ee9e3f0cddd766f1d249f1c0f74a46c63539b63ef7b1fea899585084
MD5 ffa1101d7d6ec53d1de711ecd4763093
BLAKE2b-256 67d746f5d4b1fae052c49ecd57f5c06852db472888b12291f0471fc57c92d6a2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cd48a131c4c54df2a764e668d652ea531e9c6055ab7ac3aa8aee38521ba482c5
MD5 d0d602c06f94e53477f9ecd83574b346
BLAKE2b-256 22946467ae8f0a351c839674f18d010fdb00f5afa5728350a2b30494b16089e0

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d7010bdd870811407ff5ca60c68eb220d0e295faba352d2a8a50227ef089e41f
MD5 f41b9aa656ccc802fd78a324e496f661
BLAKE2b-256 095ddcc02bd12cd6dab9b6c1d50d606acb2776e1e6fe1e9e34e8fdfa258e5df7

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 653eb618ae865b0f8472a5fc7fd1b2730ea4adb1661310bdea2b03c8b3ad0303
MD5 09f38f9f43a18f14ca59694647b6907f
BLAKE2b-256 122ad281c7e8be6ede0101e3939208889e0a131cadeef0524bc6129f4f35ae8d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.3.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 815.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pywhispercpp-1.3.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d7dee9582f04fd3fd2dfa1bfca298c7d62e8fd11834171f345e8625b5f3769ab
MD5 929ee42082f62f0d181ed2e488047880
BLAKE2b-256 65da20425950763be73c8b73542d487a768de707530fc73b225d42f514342637

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 abcdaa4b2a2987919c0a6f7126205c6ed8b215851e374aa53e695c51294c08c1
MD5 560aa68272d5f25da4be4370b91e5000
BLAKE2b-256 f21b5e164481d944a92f031d23a94f113ae12334da722925b24d08eb19bd200f

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e7912fdf9be608189898dc4d09b76ca4101eb258dabb1b7bd0b60b5594e3f11c
MD5 93d302b4a45cfbc28adbff513ec9db5a
BLAKE2b-256 87ccd58061ed79792b015367fb9271d83e135a0f42b977977c81ff6ff06964f1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a3be85cbc91988c20f65dec73ad3a7a1e8cf0e822bf96e036ea469eb44e74c89
MD5 2fbd17ebd873f3f5a7cce8fb952640e7
BLAKE2b-256 dfe2775c58b64d7358aa8d3f94bbc4c47fd70f18cc6ae8066e0ec4ab35601f1b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3b25bd874f3249c32dd28ee5fb8d0b15d32f1c4c3d652deeb55a68abe1a4b072
MD5 d5fcd20cc34cebf9d3a3f33d1d6c05b9
BLAKE2b-256 497c4bef0a0ba5a2716851d4b55e058e44748c0a1acfb67eeab0d0f07b9ec636

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c404cc47d79400ff3bbb54cbd68b9f48c5a54300184598d3fcf874f893dc7684
MD5 fa22e6564393705b0bf97b9626e621e5
BLAKE2b-256 4c89fdf0fdac9f3f90335138797aab3b2379d21c7fff4ce041433edc26729d73

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0f5b3759ec9976ef44ae7f5180a663079e5bd7f395bb37eabd6e4629af8d3a90
MD5 f41e65a8ad2241232c77d657d80423e1
BLAKE2b-256 0cbb0366ef188ced7737a278f22d9d5f375063df80f228a4024627ea08ad196f

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.3.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 815.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pywhispercpp-1.3.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b8a94e17fc35ee74da98e40dec4e841e169799a291735c81725251248b281cc5
MD5 9cc06eaac9e7530f375c18ef66007574
BLAKE2b-256 7ed6adaaaf7beda6d6bd2c2b948d93bfee406799d0a0f347e69d319403cdc471

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f16c7f62be6207ddf0cf7e14aade97987fd4871a91c7d792fd696a707e846fd7
MD5 49213e617edec874c9cfdd21abe28c9c
BLAKE2b-256 7024bd50715389c3eae6b22253ef3291196f7a8cdedf70171bed65c709be1d62

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4f5114e554c3f570dc1ce20b959d39b0729e21ea5204fe52410ab207e2367b67
MD5 832edadc6ddc55192d2e05865865cb66
BLAKE2b-256 1c9aad1b4246d4b22e9c10476fc7b11e20f4f9c6b7cecd2507baa4fd98cfae5a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b5d70e29f47700fa8d0c59e022db8d7b63aac6108fc9c47f46fc94ad1135d25c
MD5 691b62bb64acd5ab15b885058ab54a0e
BLAKE2b-256 e456a867365aac64a1108cff20f9a314b04846a444a24e46e06ccf1980fa6d9a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c3ab5a54e2cf421c26fe4fabbefa16a0feb7eea3cdc60fd5d5e720a048c9a55d
MD5 5d2b5d7147327ac3d05d68c7944dae86
BLAKE2b-256 ae07e8ea1f3ae0f8c32c5a30c112287b1554deda860ba2d049538ee6a96504c9

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 301b4400b9a8dd31f570b9e8039e02d7549b90e7fa0f04f51dd51e993ed83171
MD5 328c5dcca6705ad371d9e01ec6613cf9
BLAKE2b-256 5b8a1bc6b1c01ef7d705100e6a547be15727e92a90e9b66684103315e2555406

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pywhispercpp-1.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 953.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pywhispercpp-1.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 70bacba1cd4a7c0e746f98f08ac33ce9af598c377e59f79eb37d1fa48795300c
MD5 7997cc7466cec10ff2546f3f5756d98e
BLAKE2b-256 362519d20a816205c8c2b08bc4452100b182a8619c032f27970b8bea66fc81a6

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.3.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 816.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pywhispercpp-1.3.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2494631427a1a61ae5d5084e4add4591dcef7dbdf40da31b03f49fc0eba76b2d
MD5 7f22491463c4130f120d8863601d5893
BLAKE2b-256 4d3bb11b90fe1353c80958a314c6f11847a555d3cb5bd71eb09b94871fe845fc

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ac5e5843412cf3c90e25b3c6b645e3e851f32d0f937c18dca92f52662a6f67d3
MD5 9009865daf3fb3108b4057acc5696247
BLAKE2b-256 0b3889a186b4bc6d8d6e07058751cbcd6862cf976c268ec19d4613290508059d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3811c519984f2d66691d2baed27f401106432ef9348bae7d76e55e68a4073160
MD5 c1400cfb442d23d58443b4bd28f73df5
BLAKE2b-256 7a798fb7833734dcf52051eb093277bfb260f5c2246016ab0f062b221e557a9a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 97284898b4bacfb1132ed8f647beac1b41a97fc6d1312e70f53a7ed53c17bed2
MD5 48b96bfd4ebf85eee4c51f3df69f3b90
BLAKE2b-256 8198e559fe1d7bf80272254713ecc5a4559a6e1a077516db46aafd2d80e30932

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bcc7bde3dd5224ee0087ff7352e5a32d98fa819e7b67972b6a717354b768d84e
MD5 39e974eb1ac94d735d3c616ced414d85
BLAKE2b-256 36cf228f402edb5a7bb255ca20c629d806fb5eea4ca859cc62de86c0d9160d05

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.3.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.3.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c7a1561205be2e4cf345c41412329774300f0447ca91098cc9d3041538cddbcc
MD5 2c4bdf7b4715b867ded6ca5780298ece
BLAKE2b-256 dc6d24f3d018341e6dda04c5dac8278ac1ad6ca41622acea1ba4f2d8980a9071

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page