Skip to main content

Python bindings for whisper.cpp

Project description

pywhispercpp

Python bindings for whisper.cpp with a simple Pythonic API on top of it.

License: MIT Wheels PyPi version

whisper.cpp is:

High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model:

  • Plain C/C++ implementation without dependencies
  • Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
  • AVX intrinsics support for x86 architectures
  • VSX intrinsics support for POWER architectures
  • Mixed F16 / F32 precision
  • Low memory usage (Flash Attention)
  • Zero memory allocations at runtime
  • Runs on the CPU
  • C-style API

Supported platforms:

Table of contents

Installation

  1. Install ffmpeg
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg

# on Arch Linux
sudo pacman -S ffmpeg

# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg

# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg

# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg
  1. Once ffmpeg is installed, install pywhispercpp
pip install pywhispercpp

Or install the latest dev version from GitHub

pip install git+https://github.com/abdeladim-s/pywhispercpp

Quick start

from pywhispercpp.model import Model

model = Model('base.en', n_threads=6)
segments = model.transcribe('file.mp3', speed_up=True)
for segment in segments:
    print(segment.text)

You can also assign a custom new_segment_callback

from pywhispercpp.model import Model

model = Model('base.en', print_realtime=False, print_progress=False)
segments = model.transcribe('file.mp3', new_segment_callback=print)
  • The ggml model will be downloaded automatically.
  • You can pass any whisper.cpp parameter as a keyword argument to the Model class or to the transcribe function.
  • The transcribe function accepts any media file (audio/video), in any format.
  • Check the Model class documentation for more details.

Examples

The examples folder contains several examples inspired from the original whisper.cpp/examples.

Main

Just a straightforward example with a simple Command Line Interface.

Check the source code here, or use the CLI as follows:

pwcpp file.wav -m base --output-srt --print_realtime true

Run pwcpp --help to get the help message

usage: pwcpp [-h] [-m MODEL] [--version] [--processors PROCESSORS] [-otxt] [-ovtt] [-osrt] [-ocsv] [--strategy STRATEGY]
             [--n_threads N_THREADS] [--n_max_text_ctx N_MAX_TEXT_CTX] [--offset_ms OFFSET_MS] [--duration_ms DURATION_MS]
             [--translate TRANSLATE] [--no_context NO_CONTEXT] [--single_segment SINGLE_SEGMENT] [--print_special PRINT_SPECIAL]
             [--print_progress PRINT_PROGRESS] [--print_realtime PRINT_REALTIME] [--print_timestamps PRINT_TIMESTAMPS]
             [--token_timestamps TOKEN_TIMESTAMPS] [--thold_pt THOLD_PT] [--thold_ptsum THOLD_PTSUM] [--max_len MAX_LEN]
             [--split_on_word SPLIT_ON_WORD] [--max_tokens MAX_TOKENS] [--speed_up SPEED_UP] [--audio_ctx AUDIO_CTX]
             [--prompt_tokens PROMPT_TOKENS] [--prompt_n_tokens PROMPT_N_TOKENS] [--language LANGUAGE] [--suppress_blank SUPPRESS_BLANK]
             [--suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS] [--temperature TEMPERATURE] [--max_initial_ts MAX_INITIAL_TS]
             [--length_penalty LENGTH_PENALTY] [--temperature_inc TEMPERATURE_INC] [--entropy_thold ENTROPY_THOLD]
             [--logprob_thold LOGPROB_THOLD] [--no_speech_thold NO_SPEECH_THOLD] [--greedy GREEDY] [--beam_search BEAM_SEARCH]
             media_file [media_file ...]

positional arguments:
  media_file            The path of the media file or a list of filesseparated by space

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Path to the `ggml` model, or just the model name
  --version             show program's version number and exit
  --processors PROCESSORS
                        number of processors to use during computation
  -otxt, --output-txt   output result in a text file
  -ovtt, --output-vtt   output result in a vtt file
  -osrt, --output-srt   output result in a srt file
  -ocsv, --output-csv   output result in a CSV file
  --strategy STRATEGY   Available sampling strategiesGreefyDecoder -> 0BeamSearchDecoder -> 1
  --n_threads N_THREADS
                        Number of threads to allocate for the inferencedefault to min(4, available hardware_concurrency)
  --n_max_text_ctx N_MAX_TEXT_CTX
                        max tokens to use from past text as prompt for the decoder
  --offset_ms OFFSET_MS
                        start offset in ms
  --duration_ms DURATION_MS
                        audio duration to process in ms
  --translate TRANSLATE
                        whether to translate the audio to English
  --no_context NO_CONTEXT
                        do not use past transcription (if any) as initial prompt for the decoder
  --single_segment SINGLE_SEGMENT
                        force single segment output (useful for streaming)
  --print_special PRINT_SPECIAL
                        print special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.)
  --print_progress PRINT_PROGRESS
                        print progress information
  --print_realtime PRINT_REALTIME
                        print results from within whisper.cpp (avoid it, use callback instead)
  --print_timestamps PRINT_TIMESTAMPS
                        print timestamps for each text segment when printing realtime
  --token_timestamps TOKEN_TIMESTAMPS
                        enable token-level timestamps
  --thold_pt THOLD_PT   timestamp token probability threshold (~0.01)
  --thold_ptsum THOLD_PTSUM
                        timestamp token sum probability threshold (~0.01)
  --max_len MAX_LEN     max segment length in characters
  --split_on_word SPLIT_ON_WORD
                        split on word rather than on token (when used with max_len)
  --max_tokens MAX_TOKENS
                        max tokens per segment (0 = no limit)
  --speed_up SPEED_UP   speed-up the audio by 2x using Phase Vocoder
  --audio_ctx AUDIO_CTX
                        overwrite the audio context size (0 = use default)
  --prompt_tokens PROMPT_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --prompt_n_tokens PROMPT_N_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --language LANGUAGE   for auto-detection, set to None, "" or "auto"
  --suppress_blank SUPPRESS_BLANK
                        common decoding parameters
  --suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS
                        common decoding parameters
  --temperature TEMPERATURE
                        initial decoding temperature
  --max_initial_ts MAX_INITIAL_TS
                        max_initial_ts
  --length_penalty LENGTH_PENALTY
                        length_penalty
  --temperature_inc TEMPERATURE_INC
                        temperature_inc
  --entropy_thold ENTROPY_THOLD
                        similar to OpenAI's "compression_ratio_threshold"
  --logprob_thold LOGPROB_THOLD
                        logprob_thold
  --no_speech_thold NO_SPEECH_THOLD
                        no_speech_thold
  --greedy GREEDY       greedy
  --beam_search BEAM_SEARCH
                        beam_search

Assistant

This is a simple example showcasing the use of pywhispercpp as an assistant. The idea is to use a VAD to detect speech (in this example we used webrtcvad), and when some speech is detected, we run the transcription.
It is inspired from the whisper.cpp/examples/command example.

You can check the source code here or you can use the class directly to create your own assistant:

from pywhispercpp.examples.assistant import Assistant

my_assistant = Assistant(commands_callback=print, n_threads=8)
my_assistant.start()

Here we set the commands_callback to a simple print, so the commands will just get printed on the screen.

You can run this example from the command line as well

$ pwcpp-assistant --help

usage: pwcpp-assistant [-h] [-m MODEL] [-ind INPUT_DEVICE] [-st SILENCE_THRESHOLD] [-bd BLOCK_DURATION]

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -ind INPUT_DEVICE, --input_device INPUT_DEVICE
                        Id of The input device (aka microphone)
  -st SILENCE_THRESHOLD, --silence_threshold SILENCE_THRESHOLD
                        he duration of silence after which the inference will be running, default to 16
  -bd BLOCK_DURATION, --block_duration BLOCK_DURATION
                        minimum time audio updates in ms, default to 30

Recording

Another simple example to transcribe your own recordings.

You can use it from Python as follows:

from pywhispercpp.examples.recording import Recording

myrec = Recording(5)
myrec.start()

Or from the command line:

$ pwcpp-recording --help

usage: pwcpp-recording [-h] [-m MODEL] duration

positional arguments:
  duration              duration in seconds

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en

Live Stream Transcription

This example is an attempt to transcribe a livestream in realtime, but the results are not quite satisfactory yet, the CPU jumps quickly to 100% and I cannot use huge models on my descent machine. (Or maybe I am doing something wrong!) :sweat_smile:

If you have a powerful machine, give it a try.

From python :

from pywhispercpp.examples.livestream import LiveStream

url = ""  # Make sure it is a direct stream URL
ls = LiveStream(url=url, n_threads=4)
ls.start()

From the command line:

$ pwcpp-livestream --help

usage: pwcpp-livestream [-h] [-nt N_THREADS] [-m MODEL] [-od OUTPUT_DEVICE] [-bls BLOCK_SIZE] [-bus BUFFER_SIZE] [-ss SAMPLE_SIZE] url

positional arguments:
  url                   Stream URL

options:
  -h, --help            show this help message and exit
  -nt N_THREADS, --n_threads N_THREADS
                        number of threads, default to 3
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -od OUTPUT_DEVICE, --output_device OUTPUT_DEVICE
                        the output device, aka the speaker, leave it None to take the default
  -bls BLOCK_SIZE, --block_size BLOCK_SIZE
                        block size, default to 1024
  -bus BUFFER_SIZE, --buffer_size BUFFER_SIZE
                        number of blocks used for buffering, default to 20
  -ss SAMPLE_SIZE, --sample_size SAMPLE_SIZE
                        Sample size, default to 4

Advanced usage

  • First check the API documentation for more advanced usage.
  • If you are a more experienced user, you can access the C-Style API directly, almost all functions from whisper.h are exposed with the binding module _pywhispercpp, for example:
import _pywhispercpp as pwcpp

ctx = pwcpp.whisper_init_from_file('path/to/ggml/model')

Discussions and contributions

If you find any bug, please open an issue.

If you have any feedback, or you want to share how you are using this project, feel free to use the Discussions and open a new topic.

License

This project is licensed under the same license as whisper.cpp (MIT License).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywhispercpp-1.0.5.tar.gz (229.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pywhispercpp-1.0.5-pp39-pypy39_pp73-win_amd64.whl (254.3 kB view details)

Uploaded PyPyWindows x86-64

pywhispercpp-1.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (589.6 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (609.7 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pywhispercpp-1.0.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (510.1 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

pywhispercpp-1.0.5-pp38-pypy38_pp73-win_amd64.whl (254.1 kB view details)

Uploaded PyPyWindows x86-64

pywhispercpp-1.0.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (609.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pywhispercpp-1.0.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (509.9 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

pywhispercpp-1.0.5-cp311-cp311-win_amd64.whl (254.7 kB view details)

Uploaded CPython 3.11Windows x86-64

pywhispercpp-1.0.5-cp311-cp311-win32.whl (218.5 kB view details)

Uploaded CPython 3.11Windows x86

pywhispercpp-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.5-cp311-cp311-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

pywhispercpp-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (610.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

pywhispercpp-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl (511.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pywhispercpp-1.0.5-cp311-cp311-macosx_10_9_universal2.whl (946.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.0.5-cp310-cp310-win_amd64.whl (254.6 kB view details)

Uploaded CPython 3.10Windows x86-64

pywhispercpp-1.0.5-cp310-cp310-win32.whl (218.7 kB view details)

Uploaded CPython 3.10Windows x86

pywhispercpp-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.5-cp310-cp310-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

pywhispercpp-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (610.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

pywhispercpp-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl (511.1 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pywhispercpp-1.0.5-cp310-cp310-macosx_10_9_universal2.whl (946.5 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.0.5-cp39-cp39-win_amd64.whl (254.8 kB view details)

Uploaded CPython 3.9Windows x86-64

pywhispercpp-1.0.5-cp39-cp39-win32.whl (218.7 kB view details)

Uploaded CPython 3.9Windows x86

pywhispercpp-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.5-cp39-cp39-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

pywhispercpp-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (610.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

pywhispercpp-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl (511.2 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pywhispercpp-1.0.5-cp39-cp39-macosx_10_9_universal2.whl (946.7 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.0.5-cp38-cp38-win_amd64.whl (254.7 kB view details)

Uploaded CPython 3.8Windows x86-64

pywhispercpp-1.0.5-cp38-cp38-win32.whl (218.6 kB view details)

Uploaded CPython 3.8Windows x86

pywhispercpp-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.5-cp38-cp38-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

pywhispercpp-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (610.5 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

pywhispercpp-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl (511.1 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pywhispercpp-1.0.5-cp38-cp38-macosx_10_9_universal2.whl (946.6 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pywhispercpp-1.0.5.tar.gz.

File metadata

  • Download URL: pywhispercpp-1.0.5.tar.gz
  • Upload date:
  • Size: 229.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.5.tar.gz
Algorithm Hash digest
SHA256 677f3a2a738e9319f0972892d0efac899507a9af59f1821053e68ddc1978c0a1
MD5 664e39fec3577ca81a0ee0c3b3491a1a
BLAKE2b-256 75ccd9bb0bfa2b9df1f0949299add38cfc38e2fe4cc93ca58ac3cfb1e5611daf

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4e4614c4401895ea5a74b9d8e3fcd7eb40b4afaba745dfaad5c48e8a5704c155
MD5 fd10df8f2f8c0706885e5ed33a8f719a
BLAKE2b-256 97278e411e9874a2caed787f22c9a301145b42fdfe60a484430c1683648ea0e1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ee11e29033f40344ca47923526be584b56aaa2e6d2a7502e19730b81ab828ee
MD5 853a47bd4c585176311aadb5f54b8585
BLAKE2b-256 26b6b17a4f135787f3701669ac91685a71e04292a1402b35da4352e4ae3db768

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5afba83c720cd2f0fa73cbd8fa27e369474c564ab3e2a8e25ab41d105f6fd633
MD5 b870c93131e033edcffe140427050ec5
BLAKE2b-256 5ccdfc6e9127f93caf4d4729284ad17d11d56a42b998ef3b6a7f6f1d0d69ec8e

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69cfcd3a70c624baf84b7c8add8107a62164103d47a82230512a98c168d17971
MD5 deeceaf570ec0b03400d9e20eed6c76e
BLAKE2b-256 cd01b191e10c63f02cbe0b7e7ccc6ff28e40ac098879fdd1f8abda020fc06cc2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2a0fd145b5b09a08b1cc9d16bc42d5bd9aafc6d8e535b40a897d935957899de7
MD5 4f2cff215dd03c146c83e2d91ee1800c
BLAKE2b-256 078ba82ff94922f3cc7d2a9ea54067d928ba4bec3f931e8fa42da51b2600e466

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afa8e83b63154341f8b42b2995f4c3e36115c5be75dc3d46b8d936e43f1bdf24
MD5 af92933ea2ba26b2cb2a9e05db039fa3
BLAKE2b-256 57e68b7caf6fcc389553501b30210d758b77131fa8d3ca7eca6fc0fcfbe65dc5

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 656d6f1a0064298977b267ea2677787f142cd5522d1afbe1f5f5b6212a449a6b
MD5 ac7f5cf2c272b2b7888b34a759b06048
BLAKE2b-256 da366b6429f53a82de8b011fceb2e1cf75c58aee4e382bd4b6882ce3faf6b0ec

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c9fdc476587cbfc278357bd1ba8c8c3ba8b08bb945b3ba74d778947ae88af15
MD5 e9e83e39a5eb4cc7b557dd78dfb83296
BLAKE2b-256 8d04d75c6b4e4133f4a333c671477b14e3bd5251d2bf3de73d79ea6be74587b8

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5a2e5e190c083937d3132d62cc9a61893a60335802b60623007c84d2839e0987
MD5 d761bac9748c80533479a86c841c0f48
BLAKE2b-256 87aa4ca99ed4a90dfce4ddc9af1ff36bce4630a4094a7abaa1c8fddf99726250

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 218.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1819a84d407bb0cf858736e503c76b136b8432ddc7a14208b46a5b2bb3a3b8d5
MD5 96bc26407aa7b7dedab76a23368a3e2f
BLAKE2b-256 5b98be9a4c90d2f14f9419fb2bf41165e1f39e9a4284a3ccdbf56ce3a21ea938

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b988c2bcc0014c5ee0c0d8d83df7b13fcf2cbeedb3905dbc639065147691624a
MD5 8c68c21f16906ea2d5577da17ffca4b3
BLAKE2b-256 c6b3c4e04f6596d46fa122d9730a3f4428cc9b03df1bee38a971d9a90c8104ae

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f37a78caec1566869e2a5cebf1a6c302f19558c1dc23e7b7bbb10fd2de44c2d0
MD5 9176d04c132ad84d1c8d1454edb447ec
BLAKE2b-256 e3491f1a84389d72f675e268b974cf678324d942fed36694e347500b87fe753c

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2913a1c22b57d9169d2f89878691ccec5940fc9f055607dffb27053e195f315
MD5 66b7bae596947b2400bc8982d38851df
BLAKE2b-256 e14710139311e323679278edaa0cd6d91cb8db9711ac1d3ae1450c5edca3293f

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9a29085dff2a647ce59e9d8f200452ba6b4c9fc7c69c5a2f5bb288914fca8857
MD5 c3fd30b8a7f02c41caec8b93613df66d
BLAKE2b-256 4ef96aa032651322adf3b6108ab1ffea7ecc9abbf10b22fbb378f0fc37262df2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 903cf4f0f70161d323d6ab81f597dd5748c175d0133dc3317b1e8722b2cc0d76
MD5 616de8f0eb85947c51902cfd05288691
BLAKE2b-256 695126fb59391f02f1838c4dc351e06078304f7fa70f1974be7572b18e2fe5dc

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 344e64e72492f25c0c5c32aa6b15091918795c121b61f3656e8f8b264e117ddb
MD5 a31a286ae11f829b809778e3e950faac
BLAKE2b-256 fa2aaf2f9b63fbd3493e821d786f7597f5cf8276c7c076c3acfcdcd0f9adb640

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aa646c0eafb51041a7aa2aac13efbc41a2c35a160fe0958123a3ae0bcc398411
MD5 545715a4f9d3aadabd9a5bac8c2c52e2
BLAKE2b-256 557fa31aa80f27f0204f9ef4428a12f52fe7e9fdde9ec56fe4a65724ed2491ec

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 218.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f67cf9a4304e6aaffc27a2c784e9f51e2c7c775c189ef0388cb5df81c89903c0
MD5 03e21fb7dc16acaf75eae48b363c9ab2
BLAKE2b-256 718dd461782d509cef4d313d23f2044d25b45c4efc21b302b9561a630b5207cd

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8abac320153b4477727c0205e6bfdb0a38bffec3e02b16d50f51e329a8ea7d10
MD5 b34f640f30fed776d7f864b3cfc3a846
BLAKE2b-256 c65e841798221a1870a3ac6edc439acdfa2995ba32eab207e918d4b606b96189

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 18d605acb98ecdb58e6dc85f40071155bbbb3212a36e0f006f253f4d84025ebc
MD5 2f22d56f6c590490555ee1bce2493db5
BLAKE2b-256 16db863277dd00d7220f73e07dfb1324e6189ddd81ea7f973deb4a61215ba723

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 097aa03c6f0db0cceb451a9df6889222bc9346d793d7280bd415c9e473d3b7ac
MD5 9ce14317def760e289dd936a5402b362
BLAKE2b-256 395205ca5a7a12f3042dc4aaf96d045649568bde63c666099c21e2091cbdce64

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ec810944edffade8f6f398eb8ee1d51f64b1fec851a2eb7af67b14b08ac5a329
MD5 58ff33d5f12c83f2ea75848136b503e6
BLAKE2b-256 aef8bdcff22db8fa2752f35c2cc7fd752d55aeae92cf400162cbf4eed8d31c2e

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0910c91d594f6952478be5437d992e10bec58fbe5c6223131f7fa3d8428e9d24
MD5 e88735cb448ac62aeaaa764f146e058a
BLAKE2b-256 d5840bcef4c35d527ba3c3c4bef599fe3926a3cbca4f098e274657dba4698181

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 17d5f030ee3fc75918464d0772f4dcf9bb384ee42a90d88d0ce2cc8b10742804
MD5 ff79de9ea7afd4b15b5ec2486c62aec9
BLAKE2b-256 0b2da25f4672f961cd62af2321e5f27d2b29a6e8ffa558a5f58b9e60a4ac67b0

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pywhispercpp-1.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 254.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4707216fc2821dc7f19a48617430418100b61b26b55b83bb6de97e322f5a40ce
MD5 d05022831fd99eb31913cf63dad5b458
BLAKE2b-256 f5cc493bf3575ce94b7a41ebff93ca908726dc5a9824719c6044ba9a9364d682

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 218.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 bc54c4d517a26a5d7a014b5dc5f4c3275f7a412e440b90e520aa7fdc105d11bd
MD5 aec529d9ab261afeb1b13aa11019f393
BLAKE2b-256 713af6c9e7ea180eac35a36a98a42e96f50a203d2806d5e75ee1d77d147f4ed3

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7df7452e6407670cc0066a953a2dbebe7a04846250aba442171471209379390e
MD5 ab5badac2a7c647e559cfb946cd79abf
BLAKE2b-256 60a30738ae62faa4218e09cb79ef9320eeda3d4325510441c40fd206d4f178c3

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3cb686af46a20f9142162e01a98388a2bbcd4db49d1170dbbc83afc1dbba61b1
MD5 701b5a9c5843e27ec8c6227b9228ff75
BLAKE2b-256 aaaf20aaf4dfb65a8db13ed62178425915ff851021957e509e21a60e18f3bf50

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d6704c9f6da0ffafdad37d4ba1d5d1a716f3c2af2d1279d3cfba4a81391f181
MD5 eab6eb4bc69065e583480d3a61f0ad1d
BLAKE2b-256 7ea067d7f52fd899317b6ceeaf30e684b214fe7a3511c7a6103703f7bc543620

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 841a2dc88536acd003cf71fdef9584ae9ad856a7ca04eef3154d795800c4fcd9
MD5 bc9994935000bfeef83c9bb9513480e9
BLAKE2b-256 e6ade330c6f835ad9f61b4dffa93134add653f4e4d6ac8db58f3181cd8777af2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41a6f01cead32f3f679148643ab7edfe188cc4655f110b2d927204a0aeba95e1
MD5 bff1a6b05f505d01ace8b3db66eb2ab1
BLAKE2b-256 e3264d79f07c2863187f8e96b181d2b01c58ad2067b6295d93202240805c1030

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5feff22efd969c9a97d81954a85c3805cac388cdeda26d9d23c6b4fb7fbe385e
MD5 60af6f5441ebc51b60fdbaf7329ede45
BLAKE2b-256 33fb78bb55c57d3c753196e94e240632a960af3783e5d82798f820e6aa189dc8

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pywhispercpp-1.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 254.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6598f0af4ef7bc1a7e1c9f4ecdc88fc4222d2b708e8437f263b86e4b698bfe0c
MD5 acddbaa9551e75aeaffca74fcfeb991e
BLAKE2b-256 7de5531f2e5fc39f77e7b5bd7f67d51b54a5b5fc5f6481c6b89c8ca3322c4b90

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 218.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 302c9fc90cee5944398c766f39b869350fbccd1230a37d5517eb346de160ba6f
MD5 b048608359d8a6d57bcd88f384a9af9d
BLAKE2b-256 368b4d6c62c77ded1a056346d3e0ecce97af334951ed57a8adeae2e557d56a7b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bc378231730514d8c24721061dc2d9d171b74b4102069796e3de160e53d42761
MD5 f78386197776334aa7861a5dc9f95a4f
BLAKE2b-256 5efa7136b56cc934bed0cadf7e8cd66705bdbede1be45bfa666cdd6634c57e29

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4d5a6141bda1efc887f0cf6e7603fec84bdfe36e55c2a23d25850a77cfcddba0
MD5 d7e8cc87ead5c0f1f7d0e28a06ca35f5
BLAKE2b-256 764f79899c968b103d6fb943fb9db2ded33330572640aa347fbeddc3367d209b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c565e99cc3241a651d5f4173dc9b2b60b7d8155c744d5d858dc51d550d3f052
MD5 47c48c9ece0afb41a2f2b2ac13050545
BLAKE2b-256 c9200cdb9a2f8bc5770b8f3c5bdfdfe2d305fe76e4a0af6f63dcad43b6f4cf9a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9f040daf9c5d0260f87888dd6f5ca725865cbd083c84bd647b05bae8637e363f
MD5 20ef6bd746dbc5b4538ac0e3f54e8222
BLAKE2b-256 a50c230071416494b1bf926739283c01c4e96dd88415df744bfb7586e7de9cbc

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4bfb426f9fce24a226191652c1b81e1d2c22e803a09459eaea928095908612d9
MD5 66e758805b44ef6ec5423d976da3b3c4
BLAKE2b-256 1b84c33fe8730b4ad4985cd6d25a5f108c62d08798534eba99eb29654fb75516

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6b978121537414f19921976f425045a13723d46f13a83059a90281fcd26d28ec
MD5 9e3db9a3e146378bbf69c0f90069d888
BLAKE2b-256 52b63f15264eb0b6c8439c2fa971923dff601782a908288a42648703e3ba6614

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page