Skip to main content

Python bindings for whisper.cpp

Project description

pywhispercpp

Python bindings for whisper.cpp with a simple Pythonic API on top of it.

License: MIT

whisper.cpp is:

High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model:

  • Plain C/C++ implementation without dependencies
  • Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
  • AVX intrinsics support for x86 architectures
  • VSX intrinsics support for POWER architectures
  • Mixed F16 / F32 precision
  • Low memory usage (Flash Attention)
  • Zero memory allocations at runtime
  • Runs on the CPU
  • C-style API

Supported platforms:

Table of contents

Installation

  1. Install ffmpeg
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg

# on Arch Linux
sudo pacman -S ffmpeg

# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg

# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg

# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg
  1. Once ffmpeg is installed, install pywhispercpp
pip install git+https://github.com/abdeladim-s/pywhispercpp

Quick start

from pywhispercpp.model import Model

model = Model('base.en', n_threads=6)
segments = model.transcribe('file.mp3', speed_up=True)
for segment in segments:
    print(segment.text)
  • The ggml model will be downloaded automatically.
  • You can pass any whisper.cpp parameter as a keyword argument to the Model class or to the transcribe function.
  • Check the Model class documentation for more details.

Examples

The examples folder contains several examples inspired from the original whisper.cpp/examples.

Main

Just a straightforward example with a simple Command Line Interface.

Check the source code here, or use the CLI as follows:

pwcpp file.wav -m base --output-srt --print_realtime true

Run pwcpp --help to get the help message

usage: pwcpp [-h] [-m MODEL] [--version] [--processors PROCESSORS] [-otxt] [-ovtt] [-osrt] [-ocsv] [--strategy STRATEGY]
             [--n_threads N_THREADS] [--n_max_text_ctx N_MAX_TEXT_CTX] [--offset_ms OFFSET_MS] [--duration_ms DURATION_MS]
             [--translate TRANSLATE] [--no_context NO_CONTEXT] [--single_segment SINGLE_SEGMENT] [--print_special PRINT_SPECIAL]
             [--print_progress PRINT_PROGRESS] [--print_realtime PRINT_REALTIME] [--print_timestamps PRINT_TIMESTAMPS]
             [--token_timestamps TOKEN_TIMESTAMPS] [--thold_pt THOLD_PT] [--thold_ptsum THOLD_PTSUM] [--max_len MAX_LEN]
             [--split_on_word SPLIT_ON_WORD] [--max_tokens MAX_TOKENS] [--speed_up SPEED_UP] [--audio_ctx AUDIO_CTX]
             [--prompt_tokens PROMPT_TOKENS] [--prompt_n_tokens PROMPT_N_TOKENS] [--language LANGUAGE] [--suppress_blank SUPPRESS_BLANK]
             [--suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS] [--temperature TEMPERATURE] [--max_initial_ts MAX_INITIAL_TS]
             [--length_penalty LENGTH_PENALTY] [--temperature_inc TEMPERATURE_INC] [--entropy_thold ENTROPY_THOLD]
             [--logprob_thold LOGPROB_THOLD] [--no_speech_thold NO_SPEECH_THOLD] [--greedy GREEDY] [--beam_search BEAM_SEARCH]
             media_file [media_file ...]

positional arguments:
  media_file            The path of the media file or a list of filesseparated by space

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Path to the `ggml` model, or just the model name
  --version             show program's version number and exit
  --processors PROCESSORS
                        number of processors to use during computation
  -otxt, --output-txt   output result in a text file
  -ovtt, --output-vtt   output result in a vtt file
  -osrt, --output-srt   output result in a srt file
  -ocsv, --output-csv   output result in a CSV file
  --strategy STRATEGY   Available sampling strategiesGreefyDecoder -> 0BeamSearchDecoder -> 1
  --n_threads N_THREADS
                        Number of threads to allocate for the inferencedefault to min(4, available hardware_concurrency)
  --n_max_text_ctx N_MAX_TEXT_CTX
                        max tokens to use from past text as prompt for the decoder
  --offset_ms OFFSET_MS
                        start offset in ms
  --duration_ms DURATION_MS
                        audio duration to process in ms
  --translate TRANSLATE
                        whether to translate the audio to English
  --no_context NO_CONTEXT
                        do not use past transcription (if any) as initial prompt for the decoder
  --single_segment SINGLE_SEGMENT
                        force single segment output (useful for streaming)
  --print_special PRINT_SPECIAL
                        print special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.)
  --print_progress PRINT_PROGRESS
                        print progress information
  --print_realtime PRINT_REALTIME
                        print results from within whisper.cpp (avoid it, use callback instead)
  --print_timestamps PRINT_TIMESTAMPS
                        print timestamps for each text segment when printing realtime
  --token_timestamps TOKEN_TIMESTAMPS
                        enable token-level timestamps
  --thold_pt THOLD_PT   timestamp token probability threshold (~0.01)
  --thold_ptsum THOLD_PTSUM
                        timestamp token sum probability threshold (~0.01)
  --max_len MAX_LEN     max segment length in characters
  --split_on_word SPLIT_ON_WORD
                        split on word rather than on token (when used with max_len)
  --max_tokens MAX_TOKENS
                        max tokens per segment (0 = no limit)
  --speed_up SPEED_UP   speed-up the audio by 2x using Phase Vocoder
  --audio_ctx AUDIO_CTX
                        overwrite the audio context size (0 = use default)
  --prompt_tokens PROMPT_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --prompt_n_tokens PROMPT_N_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --language LANGUAGE   for auto-detection, set to None, "" or "auto"
  --suppress_blank SUPPRESS_BLANK
                        common decoding parameters
  --suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS
                        common decoding parameters
  --temperature TEMPERATURE
                        initial decoding temperature
  --max_initial_ts MAX_INITIAL_TS
                        max_initial_ts
  --length_penalty LENGTH_PENALTY
                        length_penalty
  --temperature_inc TEMPERATURE_INC
                        temperature_inc
  --entropy_thold ENTROPY_THOLD
                        similar to OpenAI's "compression_ratio_threshold"
  --logprob_thold LOGPROB_THOLD
                        logprob_thold
  --no_speech_thold NO_SPEECH_THOLD
                        no_speech_thold
  --greedy GREEDY       greedy
  --beam_search BEAM_SEARCH
                        beam_search

Assistant

This is a simple example showcasing the use of pywhispercpp as an assistant. The idea is to use a VAD to detect speech (in this example we used webrtcvad), and when some speech is detected, we run the transcription.
It is inspired from the whisper.cpp/examples/command example.

You can check the source code here or you can use the class directly to create your own assistant:

from pywhispercpp.examples.assistant import Assistant

my_assistant = Assistant(commands_callback=print, n_threads=8)
my_assistant.start()

Here we set the commands_callback to a simple print, so the commands will just get printed on the screen.

You can run this example from the command line as well

$ pwcpp-assistant --help

usage: pwcpp-assistant [-h] [-m MODEL] [-ind INPUT_DEVICE] [-st SILENCE_THRESHOLD] [-bd BLOCK_DURATION]

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -ind INPUT_DEVICE, --input_device INPUT_DEVICE
                        Id of The input device (aka microphone)
  -st SILENCE_THRESHOLD, --silence_threshold SILENCE_THRESHOLD
                        he duration of silence after which the inference will be running, default to 16
  -bd BLOCK_DURATION, --block_duration BLOCK_DURATION
                        minimum time audio updates in ms, default to 30

Recording

Another simple example to transcribe your own recordings.

You can use it from Python as follows:

from pywhispercpp.examples.recording import Recording

myrec = Recording(5)
myrec.start()

Or from the command line:

$ pwcpp-recording --help

usage: pwcpp-recording [-h] [-m MODEL] duration

positional arguments:
  duration              duration in seconds

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en

Live Stream Transcription

This example is an attempt to transcribe a livestream in realtime, but the results are not quite satisfactory yet, the CPU jumps quickly to 100% and I cannot use huge models on my descent machine. (Or maybe I am doing something wrong!) :sweat_smile:

If you have a powerful machine, give it a try.

From python :

from pywhispercpp.examples.livestream import LiveStream

url = ""  # Make sure it is a direct stream URL
ls = LiveStream(url=url, n_threads=4)
ls.start()

From the command line:

$ pwcpp-livestream --help

usage: pwcpp-livestream [-h] [-nt N_THREADS] [-m MODEL] [-od OUTPUT_DEVICE] [-bls BLOCK_SIZE] [-bus BUFFER_SIZE] [-ss SAMPLE_SIZE] url

positional arguments:
  url                   Stream URL

options:
  -h, --help            show this help message and exit
  -nt N_THREADS, --n_threads N_THREADS
                        number of threads, default to 3
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -od OUTPUT_DEVICE, --output_device OUTPUT_DEVICE
                        the output device, aka the speaker, leave it None to take the default
  -bls BLOCK_SIZE, --block_size BLOCK_SIZE
                        block size, default to 1024
  -bus BUFFER_SIZE, --buffer_size BUFFER_SIZE
                        number of blocks used for buffering, default to 20
  -ss SAMPLE_SIZE, --sample_size SAMPLE_SIZE
                        Sample size, default to 4

Advanced usage

  • First check the API documentation for more advanced usage.
  • If you are a more experienced user, you can access the C-Style API directly, almost all functions from whisper.h are exposed with the binding module _pywhispercpp, for example:
import _pywhispercpp as pwcpp

ctx = pwcpp.whisper_init_from_file('path/to/ggml/model')

Discussions and contributions

If you find any bug, please open an issue.

If you have any feedback, or you want to share how you are using this project, feel free to use the Discussions and open a new topic.

License

This project is licensed under the same license as whisper.cpp (MIT License).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywhispercpp-1.0.0.tar.gz (229.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pywhispercpp-1.0.0-pp39-pypy39_pp73-win_amd64.whl (253.9 kB view details)

Uploaded PyPyWindows x86-64

pywhispercpp-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (589.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (609.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pywhispercpp-1.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (509.8 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

pywhispercpp-1.0.0-pp38-pypy38_pp73-win_amd64.whl (253.8 kB view details)

Uploaded PyPyWindows x86-64

pywhispercpp-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (609.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pywhispercpp-1.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (509.6 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

pywhispercpp-1.0.0-cp311-cp311-win_amd64.whl (254.4 kB view details)

Uploaded CPython 3.11Windows x86-64

pywhispercpp-1.0.0-cp311-cp311-win32.whl (218.2 kB view details)

Uploaded CPython 3.11Windows x86

pywhispercpp-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.0-cp311-cp311-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

pywhispercpp-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (589.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (610.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

pywhispercpp-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl (510.8 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pywhispercpp-1.0.0-cp311-cp311-macosx_10_9_universal2.whl (946.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.0.0-cp310-cp310-win_amd64.whl (254.3 kB view details)

Uploaded CPython 3.10Windows x86-64

pywhispercpp-1.0.0-cp310-cp310-win32.whl (218.3 kB view details)

Uploaded CPython 3.10Windows x86

pywhispercpp-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.0-cp310-cp310-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

pywhispercpp-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (589.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (610.3 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

pywhispercpp-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl (510.7 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pywhispercpp-1.0.0-cp310-cp310-macosx_10_9_universal2.whl (946.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.0.0-cp39-cp39-win_amd64.whl (254.5 kB view details)

Uploaded CPython 3.9Windows x86-64

pywhispercpp-1.0.0-cp39-cp39-win32.whl (218.4 kB view details)

Uploaded CPython 3.9Windows x86

pywhispercpp-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.0-cp39-cp39-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

pywhispercpp-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (610.6 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

pywhispercpp-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl (510.8 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pywhispercpp-1.0.0-cp39-cp39-macosx_10_9_universal2.whl (946.4 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.0.0-cp38-cp38-win_amd64.whl (254.4 kB view details)

Uploaded CPython 3.8Windows x86-64

pywhispercpp-1.0.0-cp38-cp38-win32.whl (218.3 kB view details)

Uploaded CPython 3.8Windows x86

pywhispercpp-1.0.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

pywhispercpp-1.0.0-cp38-cp38-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

pywhispercpp-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (589.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pywhispercpp-1.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (610.2 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

pywhispercpp-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl (510.8 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pywhispercpp-1.0.0-cp38-cp38-macosx_10_9_universal2.whl (946.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pywhispercpp-1.0.0.tar.gz.

File metadata

  • Download URL: pywhispercpp-1.0.0.tar.gz
  • Upload date:
  • Size: 229.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.0.tar.gz
Algorithm Hash digest
SHA256 fe60ca128f2ee141c37276688db1f919823325c39c41adf4e88fefdfeb184133
MD5 6a4b613f1eda0a2434c02d853b73a7d6
BLAKE2b-256 20f81b63541a59fe85779421e55dcbbac8e0a3bbf401de91b7c12b1ee6cf8351

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3d2097302500044f4aaf453328956ada389e5b7f0d65c8a4c457f1f904108343
MD5 13a0956727daa56ec8bf1519a0c0ca4b
BLAKE2b-256 e08376371cb33b6cc97073a5622403b93e26e0107de7559f25a77b82c9ed0b33

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b00b1513c68a78fba51b9acdbb95716c2970a18d3025ca63b094a052dfe2672c
MD5 e180599254902cc0a47bf2c7fe498892
BLAKE2b-256 571ceac704914683e4459272919152fc5c72040e1986a3a76457c2a5b3eddaa4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d4c86feb3f4ba5f93842763e556b522eb8bc3605c31b919c1c7b0b05cac8d1e8
MD5 bb420e8fbb3135a9389a702c9fa31e62
BLAKE2b-256 5ef87c9881551dfd5200618fef589e4a3b4aa626b3ac7850cd26624eae77f45c

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac452201cf2e0b8f8b4b33e43f79649f9e5b58f4c570cc053817ebe1657f8bff
MD5 a125b7736a3ec17a76e574be33941a8f
BLAKE2b-256 23ca45a521fe9e452fc2702e7590a8f2203fc5d47cec79ca6694e08a85ab4204

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e4b42ea900c3ac160ee38f1654a2d2ee97120148b7fa62e4db0651cb27a25bb3
MD5 c6782e96494993d341ba96526ab014ef
BLAKE2b-256 df23e3cae1c8bb652d11e97ab0a625be28602fb740ab7eac8f4536555cf0dfdd

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8369b432ec46e30ff57e620e6110cc1a1cbed8b79a59458e0507688273d4dad8
MD5 ceaa6d88d6daba653f4ef8e99d3a09f7
BLAKE2b-256 712f1d059cb753999078707460de8c63b58ac3d7986fd59baf6e66f5bb86f904

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0af1b150e573e4ebeef03a0dad50f484eef7d5738eb609bd765737cd363f5e6c
MD5 345b55d74c256288240249b64e4dc01a
BLAKE2b-256 43d9dc167b945eb36965d5896d6ee0d28c19b7f598d1cd13bae44dcf4eca3e68

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67d34b23635ec2ec9c0b92fd70e1d01767f2c51d25716133838f3c34c01466b7
MD5 644c598c0adca33da39de57e282e5590
BLAKE2b-256 50f9f1ad6d15d8856f3fa635e3eb2b750c9773fa301ba6d4a4a1a0f49557223c

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dff05be6530e26978aea2e0f43ad4598f3f8773dc0a161fd4ada6c383b1a7517
MD5 86ad620d545f4c79731095d637c2c7a9
BLAKE2b-256 f400999d8e0bd7d8d5a265db2cac1807dd3d8b4282c659cc983f9e8a0b52bee2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 218.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9d9622a1188b393227a3859a122e7be75aeabb603323bd6daba9e782f2c82ee2
MD5 a29056db9dcf0bc74cc3eca6d64883b1
BLAKE2b-256 88e096835bed1da8a8ffa180d8fb9002e8dcf5862e9d27e9d206dbdd2358e0d2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 640f47a617456cfa1244b6885167bb49235362581c3502c8a28a4447c9abf3bd
MD5 5a9f8babcc5e5a4a88d124cb876b34e2
BLAKE2b-256 7cbd0764a964c48cf003c5d781b5051f8391e68c72e946204f770ed44869a553

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2c8cb041a52dcc681613696b01f65df5b1128adabf19a91c6e2f3b988a426727
MD5 8c04ab7596edee2f83fa26792ecc3db5
BLAKE2b-256 f4371cdf661192ec6ef9294f0108fc70758bb32278dc0768fc073e6232f0a77a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1733b376075a3efe0ad47c84d8044e856b83e1357497e78d83dc2c202018cc93
MD5 2690866d6c8e86c18e2b3d02899e96c4
BLAKE2b-256 261fe3c8050db3807fd2801e7be09eb8fd1565f261983fd22d8576b01abe9170

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8de5fbff8fefcd11f090f888c8cc13683a55976818c96805f4306168ace4df7f
MD5 8637dfb9463501292ba84903fbb439fe
BLAKE2b-256 0235ade3b66957e188861ab58d3b47500dcf65f92768d390823fe70d827b990a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ac1c54d4b8fd0a2d9a3e82de3a9bcf0065472d333a3950a0b1156aab9d31b42
MD5 54c6baa1f8cc6db1a0f2d7a37534b088
BLAKE2b-256 c3176f5c3da00bdd6c81a2f62ed03b528c87a873db6137b51a4a3352e250ce0f

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f694f1940eee3d523aa386b21c764994b53d2596dfcb2db1cdec16bf860ac975
MD5 b2c84e6d1bc0eb175bf827d6fcd8589a
BLAKE2b-256 aa39a8ad817db086ca204991a4da304fb2b36b0cec5bad860f541c2c05858517

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f10d7bd5554f4b2e90a10b774f6e8f637453a092db9c6a5dab74c58596b7a7ad
MD5 f1e1abef49f4ab557dbe5e8421a414a1
BLAKE2b-256 fc812d213632041e0f84a7a6f2b7c2d6dbbf6a0e9b8168ac83427a849a76a226

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 218.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a9485d8c2749ce3d222a62ee24f1a0b2d000d9b230548459fe34ff91202ffc03
MD5 d7c21e77050861828f1911e572022b65
BLAKE2b-256 daee12f1fdd55c6e56235fffe370c76f41fffab705e0f0cf7fa4023dadce3847

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 29158ba2edbf75f05256c149794e5820b8662442760f84de00f655358d319dbb
MD5 0e7baedce00e5d4ec4527a7208111f18
BLAKE2b-256 594678e4b36ad9eaf96e5e9eb9eedf202e6bc1eacb46b2e47153d219d8c77ac3

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ea8bb6578a2f75575b8a6768d28898f2078ff826dc09c80a4c4665dc09b6526
MD5 47006406ed2ae2be4bcaf523e115bded
BLAKE2b-256 3d2eef71f38541fc25e979032d599449fc353e7bb1245127001f0bdf8cd42dd6

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1f4d4cdd27dd08e38e01610343ee63624112c9c566bcfcd919bc10d94cf1e28
MD5 9e325de6963c34c0c6cea3c4fb0b3e94
BLAKE2b-256 6da05b8375c4e4e50767bfd829b0da54a9f8603316a3747cd4a4f97c4cab170b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cfa04d66af13bbe4b1c01bdd794d06ed3f27dabdb44e30318cdbdc0f82be420b
MD5 63f7a0d3c3c71e6764fcf0a9cac050a2
BLAKE2b-256 bac001cd942d642c28abf4c45026bdce25f8ff977174c55650a134a4e6f99af1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee1e690464034bb6f15eb81c735010525bfdc55c83bb0d9b3c3c49fc97ea4a8e
MD5 e93b6c0cc514ea4283fa7902ffa0d8e9
BLAKE2b-256 52e1d2a4afc529d053f4430250fd390671aeb79e8d356fc629d70517f2213775

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fe6568c8ab937fad557bd28c168b9fdeed0904c92072b9d7647268e114d11304
MD5 e57a332ceab600a08fb9bd3a5f55834d
BLAKE2b-256 1f80a90385936ebc91075995f6ecc2166c52f45c33e6946f0f7bbc8412937569

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pywhispercpp-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 254.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2d944c86e7a648e12db23220741382f95e6346a1aa352750a84d3448c31ce252
MD5 d9ec14183a0cfe6d537647adc4a37dc1
BLAKE2b-256 6f011a5e953825b872bf238500a9084ceecae2a80e20a121a7f1d4f0ab1ce32d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 218.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6d138328ef49bee06c56de9c0d243e1f2d717d9554804513d10902dcdc7d433e
MD5 889133ded15ac72070999e596ece80bd
BLAKE2b-256 3c1abd56df8e6714967cc8b72ad7a4430c8bcd847136d17e4e8f08d10d0c2c04

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c853837415e8584d06c2912da2ed2973afd35c65c0617b0c2a19261320a70205
MD5 1b2e1e93c27b2365420f48f532aceb0b
BLAKE2b-256 65b5eb26dd524e1b31a55f2d46b03e6f49962d30e78786ae4088aabb1998a6ce

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4cc297a803948756b625d5d5bae39d7457b751fdc554c673b126ca6be7231051
MD5 b72a54e3ee0e719f8081d1855d5dd9c6
BLAKE2b-256 7d5d36953df72d0b382b8edec26c47b772b79f2d7144fedac2fabf84ca8a0576

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 baea686a4ce8bccc9a0989b98f648ad50cca49bed2b3670a26bd07f3b6ea9da1
MD5 6821e4f85951ed6cbc342ce34ede53c3
BLAKE2b-256 9a1f0a04fc6e542662fb5d101f067e389f1ca85943cc09a23619a90033bb0979

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8b2cb459f5c04e447df6a1737f2d35d30d44eb13fcb7b3b87d4072c6acaef4cf
MD5 14bba755c3037e5d9cf3c03aa2cb5600
BLAKE2b-256 51f002c398d6319913f726b6f66e096f598b2f1e89da97d40d47556d5b5ec807

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8183b12ea314aaae5743ed68ce47baae6c49d6b7ec826f6620ded7c4157882e
MD5 9ac964812b90f096bfc70bbe1e37d4eb
BLAKE2b-256 fef4149220a524fbb80311ef890e3d79d39b5297488a4b47a91396c3a8f6ea5f

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cc17f89aa47f51f45150b49e529ffb48ae676587d85809d7988804f41245dd83
MD5 ff1534928e8aaf9661345becc8eb0b45
BLAKE2b-256 624ee943d3386d6686b2070b52a7f9d8ec0f6b20e551dce31e9bc79e0478f057

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pywhispercpp-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 254.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c0dcc4da5a6f2c45cc2a8858a6c13015c69f89e9a70e2fea3b1fa1c0129749d6
MD5 9b6a413f9e985d24e36fb04fec5890b5
BLAKE2b-256 e78f95af28d5f8177ae20537394351ccab7a66ea2c526f965c747ca52f696a3c

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 218.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4c9c0b206194f91db1e0eac68ff6ce5af35c278a4a87a13aee2c1dd9e58be5e9
MD5 d718d847170474cea07bf84dd3450b57
BLAKE2b-256 e831b08dfd4006f453ccd7ef988c2e1fb15ec11ba71fbd2262185cc5e3ab5349

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a01a4c0bea70d01d0fa26da1dc97bd094eb959de07a6555a1b4c4df030eb90a3
MD5 dd4bab9f6f86f0ab22674845941b2529
BLAKE2b-256 22dd784aea3475d6f78cea067ebeba3ab1f7b35687c48c9a735667a736e0bd7f

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f60cabc205ba0cfe1d969e29a0e3ae7625060bd578d4f531e7b57a0a1da31fe2
MD5 d16cecfa114b608e5b9af05d24b8b741
BLAKE2b-256 655121caf31bc8e2d93e7d24dccfd365cd698c90e84719e0d7e53c75fda00c2c

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1189429f1665c80d39ce272e3410ea5068e83a25e2087cb57ea2355afe87a379
MD5 75fbdb3812054cbfb032a3dd90318ba2
BLAKE2b-256 f6521419deae0c875354b5886a1665b323cfe62e9e8eeab3f292e0e6fbffdd02

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a8b9829e0440b6d9b256e448298d45ea01d071d997d5ecbc8aafc3de62e989bc
MD5 860c1a97ea05de0890deae61129c9629
BLAKE2b-256 ac9a325a94112aaf9a91c8ff1f2a4d36747b64c6f16f5ee00a7e8774ed664c65

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ab3b9791b4b5258b1eb3405580b482997be27e162c24539047b3a03816591d2
MD5 8b113eb2d5afaef69712be1f6067e386
BLAKE2b-256 33cf8ed50dd283d6445f3ad518a028f0ae9d78b422a52a6b73a163f659ca1b41

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.0.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.0.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5bd20ec3495841b8213465a2f83d77fe600930818075b15dc2752444765d67dd
MD5 58323b7faf36d32292df21d7c4df6cb2
BLAKE2b-256 6513c34bc3cccf0eae28115610828abcbb83fc232fee7bd19887973c967a3d93

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page