Skip to main content

Python bindings for whisper.cpp

Project description

pywhispercpp

Python bindings for whisper.cpp with a simple Pythonic API on top of it.

License: MIT Wheels PyPi version

whisper.cpp is:

High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model:

  • Plain C/C++ implementation without dependencies
  • Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
  • AVX intrinsics support for x86 architectures
  • VSX intrinsics support for POWER architectures
  • Mixed F16 / F32 precision
  • Low memory usage (Flash Attention)
  • Zero memory allocations at runtime
  • Runs on the CPU
  • C-style API

Supported platforms:

Table of contents

Installation

  1. Install ffmpeg
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg

# on Arch Linux
sudo pacman -S ffmpeg

# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg

# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg

# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg
  1. Once ffmpeg is installed, install pywhispercpp
pip install pywhispercpp

If you want to use the examples, you will need to install extra dependencies

pip install pywhispercpp[examples]

Or install the latest dev version from GitHub

pip install git+https://github.com/abdeladim-s/pywhispercpp

Quick start

from pywhispercpp.model import Model

model = Model('base.en', n_threads=6)
segments = model.transcribe('file.mp3', speed_up=True)
for segment in segments:
    print(segment.text)

You can also assign a custom new_segment_callback

from pywhispercpp.model import Model

model = Model('base.en', print_realtime=False, print_progress=False)
segments = model.transcribe('file.mp3', new_segment_callback=print)
  • The ggml model will be downloaded automatically.
  • You can pass any whisper.cpp parameter as a keyword argument to the Model class or to the transcribe function.
  • The transcribe function accepts any media file (audio/video), in any format.
  • Check the Model class documentation for more details.

Examples

The examples folder contains several examples inspired from the original whisper.cpp/examples.

Main

Just a straightforward example with a simple Command Line Interface.

Check the source code here, or use the CLI as follows:

pwcpp file.wav -m base --output-srt --print_realtime true

Run pwcpp --help to get the help message

usage: pwcpp [-h] [-m MODEL] [--version] [--processors PROCESSORS] [-otxt] [-ovtt] [-osrt] [-ocsv] [--strategy STRATEGY]
             [--n_threads N_THREADS] [--n_max_text_ctx N_MAX_TEXT_CTX] [--offset_ms OFFSET_MS] [--duration_ms DURATION_MS]
             [--translate TRANSLATE] [--no_context NO_CONTEXT] [--single_segment SINGLE_SEGMENT] [--print_special PRINT_SPECIAL]
             [--print_progress PRINT_PROGRESS] [--print_realtime PRINT_REALTIME] [--print_timestamps PRINT_TIMESTAMPS]
             [--token_timestamps TOKEN_TIMESTAMPS] [--thold_pt THOLD_PT] [--thold_ptsum THOLD_PTSUM] [--max_len MAX_LEN]
             [--split_on_word SPLIT_ON_WORD] [--max_tokens MAX_TOKENS] [--speed_up SPEED_UP] [--audio_ctx AUDIO_CTX]
             [--prompt_tokens PROMPT_TOKENS] [--prompt_n_tokens PROMPT_N_TOKENS] [--language LANGUAGE] [--suppress_blank SUPPRESS_BLANK]
             [--suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS] [--temperature TEMPERATURE] [--max_initial_ts MAX_INITIAL_TS]
             [--length_penalty LENGTH_PENALTY] [--temperature_inc TEMPERATURE_INC] [--entropy_thold ENTROPY_THOLD]
             [--logprob_thold LOGPROB_THOLD] [--no_speech_thold NO_SPEECH_THOLD] [--greedy GREEDY] [--beam_search BEAM_SEARCH]
             media_file [media_file ...]

positional arguments:
  media_file            The path of the media file or a list of filesseparated by space

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Path to the `ggml` model, or just the model name
  --version             show program's version number and exit
  --processors PROCESSORS
                        number of processors to use during computation
  -otxt, --output-txt   output result in a text file
  -ovtt, --output-vtt   output result in a vtt file
  -osrt, --output-srt   output result in a srt file
  -ocsv, --output-csv   output result in a CSV file
  --strategy STRATEGY   Available sampling strategiesGreefyDecoder -> 0BeamSearchDecoder -> 1
  --n_threads N_THREADS
                        Number of threads to allocate for the inferencedefault to min(4, available hardware_concurrency)
  --n_max_text_ctx N_MAX_TEXT_CTX
                        max tokens to use from past text as prompt for the decoder
  --offset_ms OFFSET_MS
                        start offset in ms
  --duration_ms DURATION_MS
                        audio duration to process in ms
  --translate TRANSLATE
                        whether to translate the audio to English
  --no_context NO_CONTEXT
                        do not use past transcription (if any) as initial prompt for the decoder
  --single_segment SINGLE_SEGMENT
                        force single segment output (useful for streaming)
  --print_special PRINT_SPECIAL
                        print special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.)
  --print_progress PRINT_PROGRESS
                        print progress information
  --print_realtime PRINT_REALTIME
                        print results from within whisper.cpp (avoid it, use callback instead)
  --print_timestamps PRINT_TIMESTAMPS
                        print timestamps for each text segment when printing realtime
  --token_timestamps TOKEN_TIMESTAMPS
                        enable token-level timestamps
  --thold_pt THOLD_PT   timestamp token probability threshold (~0.01)
  --thold_ptsum THOLD_PTSUM
                        timestamp token sum probability threshold (~0.01)
  --max_len MAX_LEN     max segment length in characters
  --split_on_word SPLIT_ON_WORD
                        split on word rather than on token (when used with max_len)
  --max_tokens MAX_TOKENS
                        max tokens per segment (0 = no limit)
  --speed_up SPEED_UP   speed-up the audio by 2x using Phase Vocoder
  --audio_ctx AUDIO_CTX
                        overwrite the audio context size (0 = use default)
  --prompt_tokens PROMPT_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --prompt_n_tokens PROMPT_N_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --language LANGUAGE   for auto-detection, set to None, "" or "auto"
  --suppress_blank SUPPRESS_BLANK
                        common decoding parameters
  --suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS
                        common decoding parameters
  --temperature TEMPERATURE
                        initial decoding temperature
  --max_initial_ts MAX_INITIAL_TS
                        max_initial_ts
  --length_penalty LENGTH_PENALTY
                        length_penalty
  --temperature_inc TEMPERATURE_INC
                        temperature_inc
  --entropy_thold ENTROPY_THOLD
                        similar to OpenAI's "compression_ratio_threshold"
  --logprob_thold LOGPROB_THOLD
                        logprob_thold
  --no_speech_thold NO_SPEECH_THOLD
                        no_speech_thold
  --greedy GREEDY       greedy
  --beam_search BEAM_SEARCH
                        beam_search

Assistant

This is a simple example showcasing the use of pywhispercpp as an assistant. The idea is to use a VAD to detect speech (in this example we used webrtcvad), and when some speech is detected, we run the transcription.
It is inspired from the whisper.cpp/examples/command example.

You can check the source code here or you can use the class directly to create your own assistant:

from pywhispercpp.examples.assistant import Assistant

my_assistant = Assistant(commands_callback=print, n_threads=8)
my_assistant.start()

Here we set the commands_callback to a simple print, so the commands will just get printed on the screen.

You can run this example from the command line as well

$ pwcpp-assistant --help

usage: pwcpp-assistant [-h] [-m MODEL] [-ind INPUT_DEVICE] [-st SILENCE_THRESHOLD] [-bd BLOCK_DURATION]

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -ind INPUT_DEVICE, --input_device INPUT_DEVICE
                        Id of The input device (aka microphone)
  -st SILENCE_THRESHOLD, --silence_threshold SILENCE_THRESHOLD
                        he duration of silence after which the inference will be running, default to 16
  -bd BLOCK_DURATION, --block_duration BLOCK_DURATION
                        minimum time audio updates in ms, default to 30

Recording

Another simple example to transcribe your own recordings.

You can use it from Python as follows:

from pywhispercpp.examples.recording import Recording

myrec = Recording(5)
myrec.start()

Or from the command line:

$ pwcpp-recording --help

usage: pwcpp-recording [-h] [-m MODEL] duration

positional arguments:
  duration              duration in seconds

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en

Live Stream Transcription

This example is an attempt to transcribe a livestream in realtime, but the results are not quite satisfactory yet, the CPU jumps quickly to 100% and I cannot use huge models on my descent machine. (Or maybe I am doing something wrong!) :sweat_smile:

If you have a powerful machine, give it a try.

From python :

from pywhispercpp.examples.livestream import LiveStream

url = ""  # Make sure it is a direct stream URL
ls = LiveStream(url=url, n_threads=4)
ls.start()

From the command line:

$ pwcpp-livestream --help

usage: pwcpp-livestream [-h] [-nt N_THREADS] [-m MODEL] [-od OUTPUT_DEVICE] [-bls BLOCK_SIZE] [-bus BUFFER_SIZE] [-ss SAMPLE_SIZE] url

positional arguments:
  url                   Stream URL

options:
  -h, --help            show this help message and exit
  -nt N_THREADS, --n_threads N_THREADS
                        number of threads, default to 3
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -od OUTPUT_DEVICE, --output_device OUTPUT_DEVICE
                        the output device, aka the speaker, leave it None to take the default
  -bls BLOCK_SIZE, --block_size BLOCK_SIZE
                        block size, default to 1024
  -bus BUFFER_SIZE, --buffer_size BUFFER_SIZE
                        number of blocks used for buffering, default to 20
  -ss SAMPLE_SIZE, --sample_size SAMPLE_SIZE
                        Sample size, default to 4

Advanced usage

  • First check the API documentation for more advanced usage.
  • If you are a more experienced user, you can access the C-Style API directly, almost all functions from whisper.h are exposed with the binding module _pywhispercpp.
import _pywhispercpp as pwcpp

ctx = pwcpp.whisper_init_from_file('path/to/ggml/model')

Discussions and contributions

If you find any bug, please open an issue.

If you have any feedback, or you want to share how you are using this project, feel free to use the Discussions and open a new topic.

License

This project is licensed under the same license as whisper.cpp (MIT License).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywhispercpp-1.1.3.tar.gz (231.6 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pywhispercpp-1.1.3-pp39-pypy39_pp73-win_amd64.whl (270.6 kB view details)

Uploaded PyPyWindows x86-64

pywhispercpp-1.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (633.5 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pywhispercpp-1.1.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (663.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pywhispercpp-1.1.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (550.5 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

pywhispercpp-1.1.3-pp38-pypy38_pp73-win_amd64.whl (270.3 kB view details)

Uploaded PyPyWindows x86-64

pywhispercpp-1.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pywhispercpp-1.1.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (663.6 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pywhispercpp-1.1.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (550.4 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

pywhispercpp-1.1.3-cp311-cp311-win_amd64.whl (271.1 kB view details)

Uploaded CPython 3.11Windows x86-64

pywhispercpp-1.1.3-cp311-cp311-win32.whl (235.3 kB view details)

Uploaded CPython 3.11Windows x86

pywhispercpp-1.1.3-cp311-cp311-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

pywhispercpp-1.1.3-cp311-cp311-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

pywhispercpp-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.3 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pywhispercpp-1.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (664.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

pywhispercpp-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl (551.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pywhispercpp-1.1.3-cp311-cp311-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.1.3-cp310-cp310-win_amd64.whl (271.1 kB view details)

Uploaded CPython 3.10Windows x86-64

pywhispercpp-1.1.3-cp310-cp310-win32.whl (235.2 kB view details)

Uploaded CPython 3.10Windows x86

pywhispercpp-1.1.3-cp310-cp310-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

pywhispercpp-1.1.3-cp310-cp310-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

pywhispercpp-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pywhispercpp-1.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (664.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

pywhispercpp-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl (551.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pywhispercpp-1.1.3-cp310-cp310-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.1.3-cp39-cp39-win_amd64.whl (271.1 kB view details)

Uploaded CPython 3.9Windows x86-64

pywhispercpp-1.1.3-cp39-cp39-win32.whl (235.5 kB view details)

Uploaded CPython 3.9Windows x86

pywhispercpp-1.1.3-cp39-cp39-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

pywhispercpp-1.1.3-cp39-cp39-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

pywhispercpp-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pywhispercpp-1.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (664.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

pywhispercpp-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl (551.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pywhispercpp-1.1.3-cp39-cp39-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.1.3-cp38-cp38-win_amd64.whl (271.1 kB view details)

Uploaded CPython 3.8Windows x86-64

pywhispercpp-1.1.3-cp38-cp38-win32.whl (235.2 kB view details)

Uploaded CPython 3.8Windows x86

pywhispercpp-1.1.3-cp38-cp38-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

pywhispercpp-1.1.3-cp38-cp38-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

pywhispercpp-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pywhispercpp-1.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (664.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

pywhispercpp-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl (551.6 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pywhispercpp-1.1.3-cp38-cp38-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pywhispercpp-1.1.3.tar.gz.

File metadata

  • Download URL: pywhispercpp-1.1.3.tar.gz
  • Upload date:
  • Size: 231.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pywhispercpp-1.1.3.tar.gz
Algorithm Hash digest
SHA256 a8c7af104f73862f3c81ebce5d0df4726a8eb1fe42cbaadbed8458c051bb0c1f
MD5 567b3f512dca33e03fcaae856723b4bc
BLAKE2b-256 617ec184a775b140255512ee09a7cccff270e74b5abd31b1af81cbcd4d58c4aa

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b5c15e76bd5a1df719780ff6f9c5c7bafe5f99a859fd82a96d25664112565468
MD5 620422d5fa4601c0f8f7670c88411bda
BLAKE2b-256 ef6b9559aa9511d05e18cb9c8f964441f6190d18d65338dea6b618e9221c23e5

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19938c312c71379db3cfd0363d57652088fb54a6f8fd062466a8c838382ea86e
MD5 67ab1bb4d00e2e40bf5378dc2d21ed86
BLAKE2b-256 668f024876ef92c237c0c2058b44d8e5b92f1e535170de70586d004b63a4afbe

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3874eeb5d88912d6294c3bf42460f97b77075df13f82d7f2c97b19fabd79efc1
MD5 4645c659f16b6fe7827c0d84ad306e4e
BLAKE2b-256 d607cd695c2bf89ac468249016dc1060f7df3da3f445fa11c887658624f2b285

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7bafa3efc6a112c91cb321c9001b67796d69bcedd76f062a15990421b0b35642
MD5 c5b550649baeabafd9b4966e03c75150
BLAKE2b-256 271ea60d6e5ad63238a7fec3d32d9ef338e48b89b2dc619d54a687326c023a3a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2985762a60b84f8a0058ac8904387a7eed58a68dc1ece0a0b332a5e6f9ac072b
MD5 ff7b11dc789a811a670114c6c2a1f80a
BLAKE2b-256 c7c5a2cc3bcacca2880b60241170c3eb2cf46a9a6c57e9575b0162eb93d773ee

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17e59d8b399ebe6e8ba5fd9cab8380094080cb92bb29f9122099a413860a7d7f
MD5 c6a00690ecb59334be1189ab7aef6a5a
BLAKE2b-256 fa01208592459efd0d5ea4ffafff6fffc6674cef4d01807e18eed69c98a017e4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5427455ef171801ebc9f8727726b61f61a937a3ab4ead462321882270904a495
MD5 e039f0914c2d8d69dbe9a682d6014e93
BLAKE2b-256 6ed36d23c0862259c3e0e070839cc2abb908d28e0582d096b981a2f17174b0d1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a31197e197e58459004e342548ceb69bc6ba4e19693fb8d2d154a51190af414
MD5 0897a55a0123eaac2b90dbb3fccb9b09
BLAKE2b-256 96dc27b75170f94d72b6c8c2eb2e587bc93d827c06d5d081cffb94fd201a1df1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ec8bc5e4ce50ef81dded80854121fe1a7520b9e481ef9c9a5b0554fc583b83e8
MD5 31ddc882b3da3cd53c99356e7e89abeb
BLAKE2b-256 f04ea181935fb5e851b448b75646aa2311e400c3a4b2fb4ad8423dfffc6b1933

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.1.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 235.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 34eeaddf58eafeb4ac486e4db782459797a53263ec0e8a25ac5cd44ac0645fba
MD5 705e3cf3294188b7bc48fa6dcb04764b
BLAKE2b-256 22b0bd670e703571a08f297b512d1a2a42ae3674691cc1a58eb5fb61c01070e1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5bdf246aeb01968fc0a43fb410b73a4f5b26383e22527e09caed4daf3257cf9b
MD5 b37995e26ca6caa5db8e5daeec98cbfb
BLAKE2b-256 c47643aa398b8bd7b0f63330bb85fa643250f6deb4f399c338a104c18cb8f16a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e9f8ebde9aa5d6c0cdb8e7834be0da9c624a3a1e8d044d2b11d5cd3fa5b9b9e3
MD5 b78235c3e2dfac98538b885505273243
BLAKE2b-256 50b5a49bed419bac10339625648c4dbb31a46f7abd283c2c8d8d88180bcccca1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2fa061ea34c5d3d88096719eb7599b83cab433bcb51e767dfb731dd5eda01b8
MD5 b28dc2e1cc55dc6ee97099ebc1f6b2cd
BLAKE2b-256 d1353c63a616561e7d275a6ab8ef13ca4c54b5da0d5bfa06ff535542b67dd30d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f024bc5261c301f4cf0c55632815519200c47fa58f343fa2619f4ed4739aad5d
MD5 187015adb16dbecd8e3282be4477a903
BLAKE2b-256 fe73de7902979d5c4477677cd3afc59a479b2a4bf4fa37b84c2a9ac042a4c370

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae41e4a23dfe196157432e8374d14f6da3423ef400793dad854ded647c6966c4
MD5 d5cecd6cc482c3fa6e41db623aff4375
BLAKE2b-256 56178a428f074be1bc945eebee3de260b99b0e324c50cdbcd51c02b8011a7028

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 33fd91e66a566dfa37e7d219dc5017bc5438962e715076dd2676dbd74284bae3
MD5 131f1d614f1b5611e54cc4c4fc16f6da
BLAKE2b-256 eb8e7895da1004edde5db5f5e17394c8de950ff74d358fc1bc377892597506d4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cc886843bf40b67bd8023c767358ead3b10730ee383198b46248f12be9f84eee
MD5 55d81b5f665c7f4516ac6db2616bbc84
BLAKE2b-256 3d87e6f72cc4d043a5d1d3712b83e12c89e9c41708b50f42a5edac6cce55ff0a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.1.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 235.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5ac5498148e55f55e33795b89af5927b35e05d681bbb286d9baad7f522a81d9b
MD5 c3ff08b02fc5b41e1e1248d26cf15dad
BLAKE2b-256 e8e30bde6abb6e2f5cba05b674805b64e6fc131635f75fc959977dbddc342444

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 437ea13970e1a8da1a6c0f4e992cc89bb475f90cbfd9de0b2c98643278265cd6
MD5 cc263e7f1f129342624f5b5002b101f4
BLAKE2b-256 4b830ffc123d0731367ed817b31025446a11b6dc4aa5e1a9f75c4ab2c1939ca3

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0d4990ecffa327199049c6da3a04214c486471fc6924bf484c7b3c1c0fd49e08
MD5 26185aa1f645af210deaaf7f942df625
BLAKE2b-256 cbdda332bb085ceaedb5b216450e77a6ff55b2757a815ca3af400e3979b51dcd

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7d96e29aa4bcf9d1999b31779dee0066cfc8a7da777161d4c60463a79880824
MD5 a7e0bb53b884df42eefdd6aad74d19f0
BLAKE2b-256 173adfc86642382b69b629d6ceed30647e804a2803d39fcc1e04f53795e8bade

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6faf942d6771fdf783c00dac9c40d427687c0157376c9567496adbfc314c2832
MD5 b4fbf034398673884b24b7e5ebb0d0a1
BLAKE2b-256 986d9b08635b0de2d7e325e1e5ea5fafecb9c4f2ef575520a8af3bff533c42b6

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47beb7159d7f32162e45e46813cf356ecdd31fc169b7f0e635a9963bff41a29d
MD5 10ceff368bbc6c8cef4683d173424b2b
BLAKE2b-256 96e8680d97c063f0c9b5debcb9e9b8447ecf3472d3d13d96e352cf8e94c85af2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 138e32b5e973cba8d719f8b3cc176f385979df271f3c06dbe7ba179570dd8a7c
MD5 674dacd2a02d42f288586a2c4cf42e40
BLAKE2b-256 67ebddf9d34c59305b7cfd7b9797f96a661af2bc23ee2da7732373739bed00a4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pywhispercpp-1.1.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 271.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 185f3a36d04cfb80fa65ba21c98e4ed216325c414d8c384abb3f7ed75a6c2690
MD5 b67ee9691baeb4d12622eacd68698484
BLAKE2b-256 de9d064b7048751945b832725f2ca671286c65661063abcb014856e9b633189c

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.1.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 235.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f9495ae35c0bab2e17432bc1faa10e9f238fd994409e4d827ee5e2041adfd4c0
MD5 574e258b46884b94e3cb2c191c63b4b2
BLAKE2b-256 b47f366e29feca369c874aaccc250020e99dc0d2a4b77c93a123a98baa82792b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 04e158099944f774d764d25b07a9e3d06021f98b8a17c0abf8e45cd5f10fbbdb
MD5 44c3b990b2101292a91f0aeba97ba10d
BLAKE2b-256 3192d1baf20687e5daa9be67b0fbf4dbf396058a9a6818fe6154093ec2559464

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 accb10210392760a5a80b4d834409f4b0afac58551c270b525e8b13d4d4f7975
MD5 ca98cadd3ff5ff513323aa3fa95063a7
BLAKE2b-256 269de36775ec496d3ad9702eb976484a30e3a6a23549bafc810e58861789c1e1

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d1e852ccfb3e5f68043cdf202d41627041fb93e3d3b07f421c8defdfda5b3eb
MD5 56a6214577d1cb126ed59ce838910c73
BLAKE2b-256 bd80485680072c8c81c06ff22606a399548e8c0ac7172de5aa33acda3ed3c8eb

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9d9256fa40e5423190447218c8ffde1bebfcf25583862c791e7ccb46485830cf
MD5 3acc48fba65814cff672e168f28a4e96
BLAKE2b-256 ded2d4c89dc5e61e2908db4bb054f3a23eedabf3f17b1287d7ea9f0577f7cc44

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3433e448dcc0734f48ddfc2d994e62a9d79be54b19b76ae4cc0694a4d58e87cc
MD5 3306a1a7a0d1bd8e96c97931fb582109
BLAKE2b-256 5da4e43445e98f38a531e118ee7fa01c19aa49f4df6bf43d1e134d60d1a915ca

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1b38b3e5fd43d70318cdf8d274b2c8e41aa2eb7daf230dfa5127fd3fcbe57101
MD5 5d2a2c2cc038a452ff3de5d6a0482363
BLAKE2b-256 434b5b776a79d557392d1fb5e15ffa9af32cc214d3b396482c4b8d686727228b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pywhispercpp-1.1.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 271.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6114ddad5016fdfed653d4875bfcbce161e9b3535aa548100556920bd561a6d2
MD5 2f2de088922198bd69e64515c7618ea7
BLAKE2b-256 65c30c41b2e8c021b66b63bed439e65fd3de638cf7b14e428072ccd312cac970

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.1.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 235.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6dd047d06ea7cd5d35dce98ba8bfa55a972e87ce7498410631cfcf9d000642da
MD5 ef8c1b1f090fb693d1910e7ef9a8f7b5
BLAKE2b-256 f2f8185dddc229fbe17963c10a52a20ff23aea0f5304f4c759939976cfa4d102

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 69f4525680d95b3321b3279789e65126c519a86c49e66359c2ce08c67bb335af
MD5 a555dd2b9ea27baabcc16a82d3869cd5
BLAKE2b-256 c3490f7c1a571e1032846244810617698b837d4390748d2873e64d8e234310e6

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cf29a9ac527afe72cfef33cec64a34659c1bd5a364fe9e017510cd2cd76b5f4c
MD5 f830efd126e6f22993c1871d23530617
BLAKE2b-256 f3068094fe5f2f8a3a23321752ef58f2379fc6601c73399f4711c11dd84d1913

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b4c654075d368dd53907d0bada6b37cebd3a2b0c36c526cfc01b90a65b08e84
MD5 cf6ec31d77eb9a54e11067cdf918df3d
BLAKE2b-256 76e15e952a64b5708c5d26d6d853d8e662c552cc889921ff43feebb8f7a01a2d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b7be823c0abab40bdf05b6baa1dea4ff703fecd8f39d9b7295d9dbd8c93b9766
MD5 c9c5856f14a4f6bbf659449c64150b5f
BLAKE2b-256 5c4a45873a8a72ad1fd3e5f20ac8d4c18c7c6868f5e89676639a5f7c03510c12

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 535594d4e7201f0d7da4602c3453f01d7b9d471d995ecf290f7cf1bac861ea67
MD5 07a96442b168b9b8b12effdf54cc551c
BLAKE2b-256 67cb501f7f42e5fc0d26415649b617f086ac77717f6388a037e1203f23700d77

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.1.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.1.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 873aa41d0f7e34028fda41b76371da7ccd5f4ce8e853f3fb5f129d8c7e2f78d6
MD5 e987527d5e8f44684d5ce7096207cd20
BLAKE2b-256 f66c2321db62d6ab789f9c4eb5c74c709ced5861588f79fbe4d9d387bc2a3508

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page