Skip to main content

This backtesting is used to backtest algorithmic/quant trading strategies.

Project description

Access

Repository (GitLab): https://gitlab.com/fsbc/theses/quantbacktest PyPI: https://pypi.org/project/quantbacktest/ Master's thesis: https://drive.google.com/file/d/13tK1kpX_csPnG-l2UNoQUak1IZ5kWRaA/view

Setup

Install the project via the shell: pip install quantbacktest.

Update to a newer version via the shell (do this twice!): pip install quantbacktest --upgrade.

Exemplary usage

from quantbacktest import backtest_visualizer

# Importing modules from this repository
import sys

# For managing dates
from datetime import datetime

# For allowing for flexible time differences (frequencies)
from pandas.tseries.offsets import Timedelta


display_options = {
    'boolean_plot_heatmap': False,
    'boolean_test': False,  # If multi-asset strategy is used, this will cause sampling of the signals to speed up the run for testing during development.
    'warning_no_price_for_last_day': False,
    'warning_no_price_during_execution': False,
    'warning_no_price_for_intermediate_valuation': True,
    'warning_alternative_date': False,
    'warning_calculate_daily_returns_alternative_date': False,
    'warning_no_price_for_calculate_daily_returns': False,
    'warning_buy_order_could_not_be_filled': True,
    'warning_sell_order_could_not_be_filled': True,
    'errors_on_benchmark_gap': True,
    'boolean_plot_equity_curve': False,
    'boolean_save_equity_curve_to_disk': True,
    'string_results_directory': '/home/janspoerer/code/janspoerer/tmp/results'
}

general_settings = {
    'rounding_decimal_places': 4,
    'rounding_decimal_places_for_security_quantities': 0,
}

excel_worksheet_name = 'weights'

strategy_hyperparameters = {
    'maximum_deviation_in_days': 300,
    'prices_table_id_column_name': 'token_itin',
    'excel_worksheet_name': excel_worksheet_name,  # Set this to None if CSV is used!
    # For OpenMetrics: 9.8
    'buy_parameter_space': [9.8],  # [11, 20] # Times 10! Will be divided by 10.
    # For OpenMetrics: 9.7
    'sell_parameter_space': [9.7],  # [5, 9] # Times 10! Will be divided by 10.
    'maximum_relative_exposure_per_buy': 0.34,
    'frequency': Timedelta(days=1),
    'moving_average_window_in_days': 14,
    'id': 'TP3B-248N-Q',
    'boolean_allow_partially_filled_orders': True,
    'file_path_with_signal_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/strategy_tables/test.csv'
}

constraints = {
    'maximum_individual_asset_exposure_all': 1.0,  # Not yet implemented
    'maximum_individual_asset_exposure_individual': {},  # Not yet implemented
    'maximum_gross_exposure': 1.0,  # Already implemented
    'boolean_allow_shortselling': False,  # Shortselling not yet implemented
    'minimum_cash': 100,
}

comments = {
    'display_options': repr(display_options),
    'strategy_hyperparameters': repr(strategy_hyperparameters)
}

backtest_visualizer(
    file_path_with_price_data='/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
    # ONLY LEAVE THIS LINE UNCOMMENTED IF YOU WANT TO USE ETH-ADDRESSES AS ASSET IDENTIFIERS!
    # file_path_with_token_data='raw_itsa_data/20190717_itsa_tokenbase_top600_wtd301_token.csv',  # Only for multi-asset strategies.
    name_of_foreign_key_in_price_data_table='token_itin',
    name_of_foreign_key_in_token_metadata_table='token_itin',
    # 1: execute_strategy_white_noise()
    # 2: Not used anymore, can be reassigned
    # 3: execute_strategy_multi_asset() -> Uses strategy table
    # 4: execute_strategy_ma_crossover()
    int_chosen_strategy=4,
    dict_crypto_options={
        'general': {
            'percentage_buying_fees_and_spread': 0.005,  # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
            'percentage_selling_fees_and_spread': 0.005,  # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
            # Additional fees may apply for depositing money.
            'absolute_fee_buy_order': 0.0,
            'absolute_fee_sell_order': 0.0,
        }
    },
    float_budget_in_usd=1000000.00,
    strategy_hyperparameters=strategy_hyperparameters,
    margin_loan_rate=0.05,
    list_times_of_split_for_robustness_test=[
        [datetime(2014, 1, 1), datetime(2019, 5, 30)]
    ],
    benchmark_data_specifications={
        'name_of_column_with_benchmark_primary_key': 'id',  # Will be id after processing. Columns will be renamed.
        'benchmark_key': 'TP3B-248N-Q',  # Ether: T22F-QJGB-N, Bitcoin: TP3B-248N-Q
        'file_path_with_benchmark_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
        'risk_free_rate': 0.02
    },
    display_options=display_options,
    constraints=constraints,
    general_settings=general_settings,
    comments=comments,
)

Information for maintainers/contributors

To make changes available in GitLab and as a pip install, please first push your changes to a new branch to GitLab and merge them.

  1. Update the version numbers in setup.py and in quantbacktest/__init__.py.
  2. Build wheel: python setup.py sdist bdist_wheel.
  3. Upload to PyPI: twine upload --skip-existing dist/*.*
  4. Get the current version on your machine: pip install quantbacktest --upgrade

Maintainers can also refer to this great guide: https://realpython.com/pypi-publish-python-package/#versioning-your-package

Further reference to quant trading in general

Quantopian offers state-of-the art backtesting for quantitative trading strategies for equity markets. Their YouTube channel hosts some excellent, generally applicable talks from renowned experts:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantbacktest-0.0.20.tar.gz (18.6 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quantbacktest-0.0.20-py3-none-any.whl (19.0 MB view details)

Uploaded Python 3

File details

Details for the file quantbacktest-0.0.20.tar.gz.

File metadata

  • Download URL: quantbacktest-0.0.20.tar.gz
  • Upload date:
  • Size: 18.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for quantbacktest-0.0.20.tar.gz
Algorithm Hash digest
SHA256 f5762dfd755d08ad1215786002f1a6eefda4f17653bd492500e9ad812aeee40f
MD5 bdeeeda6f6bb2f6b07d4e633fe4f7952
BLAKE2b-256 4ca3c78652e6229a1983adfb9bd2ad532fb9abf93bffdca9d4bdbfd424a041bb

See more details on using hashes here.

File details

Details for the file quantbacktest-0.0.20-py3-none-any.whl.

File metadata

  • Download URL: quantbacktest-0.0.20-py3-none-any.whl
  • Upload date:
  • Size: 19.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for quantbacktest-0.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 e84f88bef782888967cae83c869db6da3d76b6f27a0ec328665d831a218c8758
MD5 74403334571f60f1b9657ef4f1093fdf
BLAKE2b-256 b780cbead3dd666a583ef1f4a1af6a598fa5050cec05d376318be07b015d3f24

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page