Skip to main content

This backtesting is used to backtest algorithmic/quant trading strategies.

Project description

Access

Repository (GitLab): https://gitlab.com/fsbc/theses/quantbacktest PyPI: https://pypi.org/project/quantbacktest/ Master's thesis: https://drive.google.com/file/d/13tK1kpX_csPnG-l2UNoQUak1IZ5kWRaA/view

Setup

Install the project via the shell: pip install quantbacktest.

Update to a newer version via the shell (do this twice!): pip install quantbacktest --upgrade.

Exemplary usage

from quantbacktest import backtest_visualizer

# Importing modules from this repository
import sys

# For managing dates
from datetime import datetime

# For allowing for flexible time differences (frequencies)
from pandas.tseries.offsets import Timedelta


display_options = {
    'boolean_plot_heatmap': False,
    'boolean_test': False,  # If multi-asset strategy is used, this will cause sampling of the signals to speed up the run for testing during development.
    'warning_no_price_for_last_day': False,
    'warning_no_price_during_execution': False,
    'warning_no_price_for_intermediate_valuation': True,
    'warning_alternative_date': False,
    'warning_calculate_daily_returns_alternative_date': False,
    'warning_no_price_for_calculate_daily_returns': False,
    'warning_buy_order_could_not_be_filled': True,
    'warning_sell_order_could_not_be_filled': True,
    'errors_on_benchmark_gap': True,
    'boolean_plot_equity_curve': False,
    'boolean_save_equity_curve_to_disk': True,
    'string_results_directory': '/home/janspoerer/code/janspoerer/tmp/results'
}

general_settings = {
    'rounding_decimal_places': 4,
    'rounding_decimal_places_for_security_quantities': 0,
}

excel_worksheet_name = 'weights'

strategy_hyperparameters = {
    'maximum_deviation_in_days': 300,
    'prices_table_id_column_name': 'token_itin',
    'excel_worksheet_name': excel_worksheet_name,  # Set this to None if CSV is used!
    # For OpenMetrics: 9.8
    'buy_parameter_space': [9.8],  # [11, 20] # Times 10! Will be divided by 10.
    # For OpenMetrics: 9.7
    'sell_parameter_space': [9.7],  # [5, 9] # Times 10! Will be divided by 10.
    'maximum_relative_exposure_per_buy': 0.34,
    'frequency': Timedelta(days=1),
    'moving_average_window_in_days': 14,
    'id': 'TP3B-248N-Q',
    'boolean_allow_partially_filled_orders': True,
    'string_file_path_with_signal_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/strategy_tables/test.csv'
}

constraints = {
    'maximum_individual_asset_exposure_all': 1.0,  # Not yet implemented
    'maximum_individual_asset_exposure_individual': {},  # Not yet implemented
    'maximum_gross_exposure': 1.0,  # Already implemented
    'boolean_allow_shortselling': False,  # Shortselling not yet implemented
    'minimum_cash': 100,
}

comments = {
    'display_options': repr(display_options),
    'strategy_hyperparameters': repr(strategy_hyperparameters)
}

backtest_visualizer(
    file_path_with_price_data='/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
    # ONLY LEAVE THIS LINE UNCOMMENTED IF YOU WANT TO USE ETH-ADDRESSES AS ASSET IDENTIFIERS!
    # file_path_with_token_data='raw_itsa_data/20190717_itsa_tokenbase_top600_wtd301_token.csv',  # Only for multi-asset strategies.
    name_of_foreign_key_in_price_data_table='token_itin',
    name_of_foreign_key_in_token_metadata_table='token_itin',
    # 1: execute_strategy_white_noise()
    # 2: Not used anymore, can be reassigned
    # 3: execute_strategy_multi_asset() -> Uses strategy table
    # 4: execute_strategy_ma_crossover()
    int_chosen_strategy=4,
    dict_crypto_options={
        'general': {
            'percentage_buying_fees_and_spread': 0.005,  # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
            'percentage_selling_fees_and_spread': 0.005,  # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
            # Additional fees may apply for depositing money.
            'absolute_fee_buy_order': 0.0,
            'absolute_fee_sell_order': 0.0,
        }
    },
    float_budget_in_usd=1000000.00,
    strategy_hyperparameters=strategy_hyperparameters,
    margin_loan_rate=0.05,
    list_times_of_split_for_robustness_test=[
        [datetime(2014, 1, 1), datetime(2019, 5, 30)]
    ],
    benchmark_data_specifications={
        'name_of_column_with_benchmark_primary_key': 'id',  # Will be id after processing. Columns will be renamed.
        'benchmark_key': 'TP3B-248N-Q',  # Ether: T22F-QJGB-N, Bitcoin: TP3B-248N-Q
        'file_path_with_benchmark_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
        'risk_free_rate': 0.02
    },
    display_options=display_options,
    constraints=constraints,
    general_settings=general_settings,
    comments=comments,
)

Information for maintainers/contributors

To make changes available in GitLab and as a pip install, please first push your changes to a new branch to GitLab and merge them.

  1. Update the version numbers in setup.py and in quantbacktest/__init__.py.
  2. Build wheel: python setup.py sdist bdist_wheel.
  3. Upload to PyPI: twine upload --skip-existing dist/*.*
  4. Get the current version on your machine: pip install quantbacktest --upgrade

Maintainers can also refer to this great guide: https://realpython.com/pypi-publish-python-package/#versioning-your-package

Further reference to quant trading in general

Quantopian offers state-of-the art backtesting for quantitative trading strategies for equity markets. Their YouTube channel hosts some excellent, generally applicable talks from renowned experts:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantbacktest-0.0.31.tar.gz (18.6 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quantbacktest-0.0.31-py3-none-any.whl (19.0 MB view details)

Uploaded Python 3

File details

Details for the file quantbacktest-0.0.31.tar.gz.

File metadata

  • Download URL: quantbacktest-0.0.31.tar.gz
  • Upload date:
  • Size: 18.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for quantbacktest-0.0.31.tar.gz
Algorithm Hash digest
SHA256 87bdc487aa25ead1f7b2b11c09dbed42a04cf40a1209b1d96c1719c30fe68424
MD5 086e947e28b6ddde395c93050dd2cd37
BLAKE2b-256 1415fa563280de0b5a3e8c5a0d38079a86ab5b926ac00ac2999f75005209ea8c

See more details on using hashes here.

File details

Details for the file quantbacktest-0.0.31-py3-none-any.whl.

File metadata

  • Download URL: quantbacktest-0.0.31-py3-none-any.whl
  • Upload date:
  • Size: 19.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for quantbacktest-0.0.31-py3-none-any.whl
Algorithm Hash digest
SHA256 76b1273225ba0104a0f231c7117ab308074ac0e4c98192d7addf7c1d8b8f0e78
MD5 3567e6e30da709e32abde13c6c62d4dc
BLAKE2b-256 0f2989c3c74af52875fcb8cf663156ca0964aae0a6512768a2119474a7b50bd9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page