Skip to main content

This backtesting is used to backtest algorithmic/quant trading strategies.

Project description

Access

Repository (GitLab): https://gitlab.com/fsbc/theses/quantbacktest PyPI: https://pypi.org/project/quantbacktest/ Master's thesis: https://drive.google.com/file/d/13tK1kpX_csPnG-l2UNoQUak1IZ5kWRaA/view

Setup

Install the project via the shell: pip install quantbacktest.

Update to a newer version via the shell (do this twice!): pip install quantbacktest --upgrade.

Exemplary usage

from quantbacktest import backtest_visualizer

# Importing modules from this repository
import sys

# For managing dates
from datetime import datetime

# For allowing for flexible time differences (frequencies)
from pandas.tseries.offsets import Timedelta


display_options = {
    'boolean_plot_heatmap': False,
    'boolean_test': False,  # If multi-asset strategy is used, this will cause sampling of the signals to speed up the run for testing during development.
    'warning_no_price_for_last_day': False,
    'warning_no_price_during_execution': False,
    'warning_no_price_for_intermediate_valuation': True,
    'warning_alternative_date': False,
    'warning_calculate_daily_returns_alternative_date': False,
    'warning_no_price_for_calculate_daily_returns': False,
    'warning_buy_order_could_not_be_filled': True,
    'warning_sell_order_could_not_be_filled': True,
    'errors_on_benchmark_gap': True,
    'boolean_plot_equity_curve': False,
    'boolean_save_equity_curve_to_disk': True,
    'string_results_directory': '/home/janspoerer/code/janspoerer/tmp/results'
}

general_settings = {
    'rounding_decimal_places': 4,
    'rounding_decimal_places_for_security_quantities': 0,
}

excel_worksheet_name = 'weights'

strategy_hyperparameters = {
    'maximum_deviation_in_days': 300,
    'prices_table_id_column_name': 'token_itin',
    'excel_worksheet_name': excel_worksheet_name,  # Set this to None if CSV is used!
    # For OpenMetrics: 9.8
    'buy_parameter_space': [9.8],  # [11, 20] # Times 10! Will be divided by 10.
    # For OpenMetrics: 9.7
    'sell_parameter_space': [9.7],  # [5, 9] # Times 10! Will be divided by 10.
    'maximum_relative_exposure_per_buy': 0.34,
    'frequency': Timedelta(days=1),
    'moving_average_window_in_days': 14,
    'id': 'TP3B-248N-Q',
    'boolean_allow_partially_filled_orders': True,
    'string_file_path_with_signal_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/strategy_tables/test.csv'
}

constraints = {
    'maximum_individual_asset_exposure_all': 1.0,  # Not yet implemented
    'maximum_individual_asset_exposure_individual': {},  # Not yet implemented
    'maximum_gross_exposure': 1.0,  # Already implemented
    'boolean_allow_shortselling': False,  # Shortselling not yet implemented
    'minimum_cash': 100,
}

comments = {
    'display_options': repr(display_options),
    'strategy_hyperparameters': repr(strategy_hyperparameters)
}

backtest_visualizer(
    file_path_with_price_data='/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
    # ONLY LEAVE THIS LINE UNCOMMENTED IF YOU WANT TO USE ETH-ADDRESSES AS ASSET IDENTIFIERS!
    # file_path_with_token_data='raw_itsa_data/20190717_itsa_tokenbase_top600_wtd301_token.csv',  # Only for multi-asset strategies.
    name_of_foreign_key_in_price_data_table='token_itin',
    name_of_foreign_key_in_token_metadata_table='token_itin',
    # 1: execute_strategy_white_noise()
    # 2: Not used anymore, can be reassigned
    # 3: execute_strategy_multi_asset() -> Uses strategy table
    # 4: execute_strategy_ma_crossover()
    int_chosen_strategy=4,
    dict_crypto_options={
        'general': {
            'percentage_buying_fees_and_spread': 0.005,  # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
            'percentage_selling_fees_and_spread': 0.005,  # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
            # Additional fees may apply for depositing money.
            'absolute_fee_buy_order': 0.0,
            'absolute_fee_sell_order': 0.0,
        }
    },
    float_budget_in_usd=1000000.00,
    strategy_hyperparameters=strategy_hyperparameters,
    margin_loan_rate=0.05,
    list_times_of_split_for_robustness_test=[
        [datetime(2014, 1, 1), datetime(2019, 5, 30)]
    ],
    benchmark_data_specifications={
        'name_of_column_with_benchmark_primary_key': 'id',  # Will be id after processing. Columns will be renamed.
        'benchmark_key': 'TP3B-248N-Q',  # Ether: T22F-QJGB-N, Bitcoin: TP3B-248N-Q
        'file_path_with_benchmark_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
        'risk_free_rate': 0.02
    },
    display_options=display_options,
    constraints=constraints,
    general_settings=general_settings,
    comments=comments,
)

Information for maintainers/contributors

To make changes available in GitLab and as a pip install, please first push your changes to a new branch to GitLab and merge them.

  1. Update the version numbers in setup.py and in quantbacktest/__init__.py.
  2. Build wheel: python setup.py sdist bdist_wheel.
  3. Upload to PyPI: twine upload --skip-existing dist/*.*
  4. Get the current version on your machine: pip install quantbacktest --upgrade

Maintainers can also refer to this great guide: https://realpython.com/pypi-publish-python-package/#versioning-your-package

Further reference to quant trading in general

Quantopian offers state-of-the art backtesting for quantitative trading strategies for equity markets. Their YouTube channel hosts some excellent, generally applicable talks from renowned experts:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantbacktest-0.0.30.tar.gz (18.6 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quantbacktest-0.0.30-py3-none-any.whl (19.0 MB view details)

Uploaded Python 3

File details

Details for the file quantbacktest-0.0.30.tar.gz.

File metadata

  • Download URL: quantbacktest-0.0.30.tar.gz
  • Upload date:
  • Size: 18.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for quantbacktest-0.0.30.tar.gz
Algorithm Hash digest
SHA256 00926f268795e27c2d80adf0378d13b43582ed015b63b7cf4458c65bc3086f42
MD5 1c2a0869694050444528f46736f92782
BLAKE2b-256 a218d59e4d117e240b990f7a7d0c204bc836f8680bec2e1164e8110ee9ffb5dc

See more details on using hashes here.

File details

Details for the file quantbacktest-0.0.30-py3-none-any.whl.

File metadata

  • Download URL: quantbacktest-0.0.30-py3-none-any.whl
  • Upload date:
  • Size: 19.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for quantbacktest-0.0.30-py3-none-any.whl
Algorithm Hash digest
SHA256 12f1f65453634dec9794a8882121f762ee5da9fcf39d00c98c5e0a211e2d6b71
MD5 579f360772f641186e79abf26acf246b
BLAKE2b-256 32e7fc80b406536933d194f776a3b139d7cbbb5fb17f7f8b8a4092b7e550dff1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page