Skip to main content

A tool for quick statistical analysis for HEP experiments

Project description

Setup

Clone the repository:

git clone ssh://git@gitlab.cern.ch:7999/clcheng/quickstats.git

1. CERN User

To set up from lxplus, just do

source setup.sh

2. Genearl User

To set up locally, make sure you have pyROOT 6.22+ installed (using conda is recommended), and do

pip install quickstats

Important: First-time compilation

To compile c++ dependencies, do this for first time use

quickstats compile

Installing pyROOT

Simplest way to install pyROOT is via conda

conda install -c conda-forge ROOT

Command Line Tools

Run Pulls

quickstats run_pulls -i <input_ws_path> -d <dataset_name> -p <np_name/pattern> --poi <poi_name> --parallel -1 -o <output_dir>

The following options are available

Option Description Default
-i/--input_file Path to the input workspace file -
-w/--workspace Name of workspace. Auto-detect by default. None
-m/--model_config Name of model config. Auto-detect by default. None
-d/--data Name of dataset "combData"
-p/--parameter Nuisance parameter(s) to run pulls on. Multiple parameters are separated by commas. Wildcards are accepted. All NPs will be run over by default ""
-x/--poi POIs to measure. If empty, impact on POI will not be calculated. ""
-r/--profile Parameters to profile ""
-f/--fix Parameters to fix ""
-s/--snapshot Name of initial snapshot "nominalNuis"
-o/--outdir Output directory "pulls"
-t/--minimizer_type Minimizer type "Minuit2"
-a/--minimizer_algo Minimizer algorithm "Migrad"
-c/--num_cpu Number of CPUs to use per parameter 1
--binned/--unbinned Whether to use binned likelihood True
-q/--precision Precision for scan 0.001
-e/--eps Tolerance 1.0
-l/--log_level Log level "INFO"
--eigen/--no-eigen Compute eigenvalues and vectors False
--strategy Default fit strategy 0
--fix-cache/--no-fix-cache Fix StarMomentMorph cache True
--fix-multi/--no-fix-multi Fix MultiPdf level 2 True
--offset/--no-offset Offset likelihood True
--optimize/--no-optimize Optimize constant terms True
--max_calls Maximum number of function calls -1
--max_iters Maximum number of Minuit iterations -1
--parallel Parallelize job across different nuisanceparameters using N workers. Use -1 for N_CPU workers. 0
--cache/--no-cache Cache existing result True
--exclude Exclude NPs (wildcard is accepted) ""

Plot Pulls

quickstats plot_pulls --help

Run Likelihood Scan

quickstats likelihood_scan --help

Inspect Workspace

quickstats inspect_ws --help

Asymptotic CLs Limit

quickstats cls_limit --help

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickstats-0.4.6.tar.gz (50.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quickstats-0.4.6-py3-none-any.whl (59.8 kB view details)

Uploaded Python 3

File details

Details for the file quickstats-0.4.6.tar.gz.

File metadata

  • Download URL: quickstats-0.4.6.tar.gz
  • Upload date:
  • Size: 50.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.6.tar.gz
Algorithm Hash digest
SHA256 ac170efcd94d914ba0461577745a619c4389ab126f5d649e1f2383107c1f70a2
MD5 3405ad9252624f3dbceb24c48f9f71e7
BLAKE2b-256 2e9976cbd14ff7b7da807388fb3e2f6da02b6cf1d446dcfa09449f14a64fddc1

See more details on using hashes here.

File details

Details for the file quickstats-0.4.6-py3-none-any.whl.

File metadata

  • Download URL: quickstats-0.4.6-py3-none-any.whl
  • Upload date:
  • Size: 59.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 51369dd635bc6089a3afff2259964acd9aa0f694050dd2858ddb344e579d2ef0
MD5 cc051432e8ca2a706f27c6b84e7d9d07
BLAKE2b-256 bba44baa0234e448717a5d6d2bfc87edaccb86289110028c6277a990536f8acb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page