Skip to main content

A tool for quick statistical analysis for HEP experiments

Project description

Setup

Clone the repository:

git clone ssh://git@gitlab.cern.ch:7999/clcheng/quickstats.git

1. CERN User

To set up from lxplus, just do

source setup.sh

2. Genearl User

To set up locally, make sure you have pyROOT 6.22+ installed (using conda is recommended), and do

pip install quickstats

Important: First-time compilation

To compile c++ dependencies, do this for first time use

quickstats compile

Installing pyROOT

Simplest way to install pyROOT is via conda

conda install -c conda-forge ROOT

Command Line Tools

Run Pulls

quickstats run_pulls -i <input_ws_path> -d <dataset_name> -p <np_name/pattern> --poi <poi_name> --parallel -1 -o <output_dir>

The following options are available

Option Description Default
-i/--input_file Path to the input workspace file -
-w/--workspace Name of workspace. Auto-detect by default. None
-m/--model_config Name of model config. Auto-detect by default. None
-d/--data Name of dataset "combData"
-p/--parameter Nuisance parameter(s) to run pulls on. Multiple parameters are separated by commas. Wildcards are accepted. All NPs will be run over by default ""
-x/--poi POIs to measure. If empty, impact on POI will not be calculated. ""
-r/--profile Parameters to profile ""
-f/--fix Parameters to fix ""
-s/--snapshot Name of initial snapshot "nominalNuis"
-o/--outdir Output directory "pulls"
-t/--minimizer_type Minimizer type "Minuit2"
-a/--minimizer_algo Minimizer algorithm "Migrad"
-c/--num_cpu Number of CPUs to use per parameter 1
--binned/--unbinned Whether to use binned likelihood True
-q/--precision Precision for scan 0.001
-e/--eps Tolerance 1.0
-l/--log_level Log level "INFO"
--eigen/--no-eigen Compute eigenvalues and vectors False
--strategy Default fit strategy 0
--fix-cache/--no-fix-cache Fix StarMomentMorph cache True
--fix-multi/--no-fix-multi Fix MultiPdf level 2 True
--offset/--no-offset Offset likelihood True
--optimize/--no-optimize Optimize constant terms True
--max_calls Maximum number of function calls -1
--max_iters Maximum number of Minuit iterations -1
--parallel Parallelize job across different nuisanceparameters using N workers. Use -1 for N_CPU workers. 0
--cache/--no-cache Cache existing result True
--exclude Exclude NPs (wildcard is accepted) ""

Plot Pulls

quickstats plot_pulls --help

Run Likelihood Scan

quickstats likelihood_scan --help

Inspect Workspace

quickstats inspect_ws --help

Asymptotic CLs Limit

quickstats cls_limit --help

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickstats-0.4.8.tar.gz (50.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quickstats-0.4.8-py3-none-any.whl (59.8 kB view details)

Uploaded Python 3

File details

Details for the file quickstats-0.4.8.tar.gz.

File metadata

  • Download URL: quickstats-0.4.8.tar.gz
  • Upload date:
  • Size: 50.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.8.tar.gz
Algorithm Hash digest
SHA256 d664f1e7b68ad5f9ca270d26a6ed614d91f5e07a43bb26b5f4d889d11f3a6008
MD5 7d0265b971402e56ffee61a285d60347
BLAKE2b-256 b15a57ac14a0a1fabcb258f24d035b34d56645724e8c1580f2ecc1da7a3f85ee

See more details on using hashes here.

File details

Details for the file quickstats-0.4.8-py3-none-any.whl.

File metadata

  • Download URL: quickstats-0.4.8-py3-none-any.whl
  • Upload date:
  • Size: 59.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.8-py3-none-any.whl
Algorithm Hash digest
SHA256 bd8c0c90c8df13f810d89d13d5369587869f9f22a3c0a06547be415a19390b5b
MD5 e0ed022456cf68a1d90ed421290c61e8
BLAKE2b-256 29c0f4bc3c01b4d83f3b6d175396c9db06544c7e6acd3e915cfd308cb33121a1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page