Skip to main content

A tool for quick statistical analysis for HEP experiments

Project description

Setup

Clone the repository:

git clone ssh://git@gitlab.cern.ch:7999/clcheng/quickstats.git

1. CERN User

To set up from lxplus, just do

source setup.sh

2. Genearl User

To set up locally, make sure you have pyROOT 6.22+ installed (using conda is recommended), and do

pip install quickstats

Important: First-time compilation

To compile c++ dependencies, do this for first time use

quickstats compile

Installing pyROOT

Simplest way to install pyROOT is via conda

conda install -c conda-forge ROOT

Command Line Tools

Run Pulls

quickstats run_pulls -i <input_ws_path> -d <dataset_name> -p <np_name/pattern> --poi <poi_name> --parallel -1 -o <output_dir>

The following options are available

Option Description Default
-i/--input_file Path to the input workspace file -
-w/--workspace Name of workspace. Auto-detect by default. None
-m/--model_config Name of model config. Auto-detect by default. None
-d/--data Name of dataset "combData"
-p/--parameter Nuisance parameter(s) to run pulls on. Multiple parameters are separated by commas. Wildcards are accepted. All NPs will be run over by default ""
-x/--poi POIs to measure. If empty, impact on POI will not be calculated. ""
-r/--profile Parameters to profile ""
-f/--fix Parameters to fix ""
-s/--snapshot Name of initial snapshot "nominalNuis"
-o/--outdir Output directory "pulls"
-t/--minimizer_type Minimizer type "Minuit2"
-a/--minimizer_algo Minimizer algorithm "Migrad"
-c/--num_cpu Number of CPUs to use per parameter 1
--binned/--unbinned Whether to use binned likelihood True
-q/--precision Precision for scan 0.001
-e/--eps Tolerance 1.0
-l/--log_level Log level "INFO"
--eigen/--no-eigen Compute eigenvalues and vectors False
--strategy Default fit strategy 0
--fix-cache/--no-fix-cache Fix StarMomentMorph cache True
--fix-multi/--no-fix-multi Fix MultiPdf level 2 True
--offset/--no-offset Offset likelihood True
--optimize/--no-optimize Optimize constant terms True
--max_calls Maximum number of function calls -1
--max_iters Maximum number of Minuit iterations -1
--parallel Parallelize job across different nuisanceparameters using N workers. Use -1 for N_CPU workers. 0
--cache/--no-cache Cache existing result True
--exclude Exclude NPs (wildcard is accepted) ""

Plot Pulls

quickstats plot_pulls --help

Run Likelihood Scan

quickstats likelihood_scan --help

Inspect Workspace

quickstats inspect_ws --help

Asymptotic CLs Limit

quickstats cls_limit --help

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickstats-0.4.7.tar.gz (50.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quickstats-0.4.7-py3-none-any.whl (59.8 kB view details)

Uploaded Python 3

File details

Details for the file quickstats-0.4.7.tar.gz.

File metadata

  • Download URL: quickstats-0.4.7.tar.gz
  • Upload date:
  • Size: 50.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.7.tar.gz
Algorithm Hash digest
SHA256 e47a6cc2ffdca377b9ca45456eb5afe8eb4213020fcf58934852ac62a78ba242
MD5 dbe201ea082c76919ff5bc50d2e2a6d2
BLAKE2b-256 efedfbfc99b787471a4533032e91013e290f41775cf835f53ebfcbc480568c9b

See more details on using hashes here.

File details

Details for the file quickstats-0.4.7-py3-none-any.whl.

File metadata

  • Download URL: quickstats-0.4.7-py3-none-any.whl
  • Upload date:
  • Size: 59.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e6d306692bf12332b858ea240948133374c25b26f24bceb3de571cb6428496d4
MD5 8ac8d94cfd4fae67251d8907bc486217
BLAKE2b-256 1e96a8348248f309f2b0374b37e258dc1e62ab77f382e679d2c63c54983d3bb4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page