Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.7.1-cp313-cp313t-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.13tWindows x86-64

torchaudio-2.7.1-cp313-cp313t-manylinux_2_28_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ x86-64

torchaudio-2.7.1-cp313-cp313t-manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ ARM64

torchaudio-2.7.1-cp313-cp313t-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

torchaudio-2.7.1-cp313-cp313-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.13Windows x86-64

torchaudio-2.7.1-cp313-cp313-manylinux_2_28_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

torchaudio-2.7.1-cp313-cp313-manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

torchaudio-2.7.1-cp313-cp313-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

torchaudio-2.7.1-cp312-cp312-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12Windows x86-64

torchaudio-2.7.1-cp312-cp312-manylinux_2_28_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

torchaudio-2.7.1-cp312-cp312-manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

torchaudio-2.7.1-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

torchaudio-2.7.1-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11Windows x86-64

torchaudio-2.7.1-cp311-cp311-manylinux_2_28_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

torchaudio-2.7.1-cp311-cp311-manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

torchaudio-2.7.1-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

torchaudio-2.7.1-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10Windows x86-64

torchaudio-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

torchaudio-2.7.1-cp310-cp310-manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

torchaudio-2.7.1-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

torchaudio-2.7.1-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9Windows x86-64

torchaudio-2.7.1-cp39-cp39-manylinux_2_28_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

torchaudio-2.7.1-cp39-cp39-manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

torchaudio-2.7.1-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.7.1-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 c802e0dcbf38669007327bb52f065573cc5cac106eaca987f6e1a32e6282263a
MD5 23c9da386a882d94c2662da3b432762c
BLAKE2b-256 915e9262a7e41e47bc87eb245c4fc485eb26ff41a05886b241c003440c9e0107

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 98257fc14dd493ba5a3258fb6d61d27cd64a48ee79537c3964c4da26b9bf295f
MD5 e9f010b5f3f6bd4f639a3d6cb79f0a27
BLAKE2b-256 834557a437fe41b302fc79b4eb78fdb3e480ff42c66270e7505eedf0b000969c

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1850475ef9101ea0b3593fe93ff6ee4e7a20598f6da6510761220b9fe56eb7fa
MD5 260d3ae9b7008f1b53174aa3357bf383
BLAKE2b-256 f7169d03dc62613f276f9666eb0609164287df23986b67d20b53e78d21a3d8d8

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18560955b8beb2a8d39a6bfae20a442337afcefb3dfd4ee007ce82233a796799
MD5 fe4ee5f7908acb51a086268a2f4b5852
BLAKE2b-256 735eda52d2fa9f7cc89512b63dd8a88fb3e097a89815f440cc16159b216ec611

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.7.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.7

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 edb4deaa6f95acd5522912ed643303d0b86d79a6f15914362f5a5d49baaf5d13
MD5 0523ba1cdaa2a244c2bcdd3cbf16dec5
BLAKE2b-256 1291dbd17a6eda4b0504d9b4f1f721a1654456e39f7178b8462344f942100865

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1862b063d8d4e55cb4862bcbd63568545f549825a3c5605bd312224c3ebb1919
MD5 9d22a43c734c85ece0618daefb5ec2dd
BLAKE2b-256 bbab83f282ca5475ae34c58520a4a97b6d69438bc699d70d16432deb19791cda

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 271f717844e5c7f9e05c8328de817bf90f46d83281c791e94f54d4edea2f5817
MD5 2f358aa6e2b5da23ce5091ada767361a
BLAKE2b-256 3af9ca0e0960526e6deaa476d168b877480a3fbae5d44668a54de963a9800097

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e5f0599a507f4683546878ed9667e1b32d7ca3c8a957e4c15c6b302378ef4dee
MD5 6c2bf1eca05143b2fb45c47da58e658c
BLAKE2b-256 b6ee6e308868b9467e1b51da9d781cb73dd5aadca7c8b6256f88ce5d18a7fb77

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.7.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.7

File hashes

Hashes for torchaudio-2.7.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9cfb8f6ace8e01e2b89de74eb893ba5ce936b88b415383605b0a4d974009dec7
MD5 8319aa671e0caf0e739fe67032c335b8
BLAKE2b-256 522906f887baf22cbba85ae331b71b110b115bf11b3968f5914a50c17dde5ab7

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9cbcdaab77ad9a73711acffee58f4eebc8a0685289a938a3fa6f660af9489aee
MD5 14546b823c6938adb18bc33ba581acf9
BLAKE2b-256 48650f46ba74cdc67ea9a8c37c8acfb5194d81639e481e85903c076bcd97188c

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d66bd76b226fdd4135c97650e1b7eb63fb7659b4ed0e3a778898e41dbba21b61
MD5 f467418dcf861fc3a0e5cb4bbf176d1e
BLAKE2b-256 627d6c15f15d3edc5271abc808f70713644b50f0f7bfb85a09dba8b5735fbad3

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9306dcfc4586cebd7647a93fe9a448e791c4f83934da616b9433b75597a1f978
MD5 f9d13cf8a5c08fbbf456128a272031d2
BLAKE2b-256 0bd1eb8bc3b3502dddb1b789567b7b19668b1d32817266887b9f381494cfe463

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.7.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.7

File hashes

Hashes for torchaudio-2.7.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0ae0678ad27355eebea5a9fdd9ae9bfec444f8405f9b6c60026905ba3665c43a
MD5 8188f7f896163058641d445bb681e522
BLAKE2b-256 78cc11709b2cbf841eda124918523088d9aaa1509ae4400f346192037e6de6c6

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f8bd69354a397753b9dea9699d9e1251f8496fbbdf3028c7086a57a615bf33c3
MD5 670e2e5ce03958d3c140bf9d1eb8235d
BLAKE2b-256 0dc58ba8869ac5607bbd83ea864bda2c628f8b7b55a9200f8147687995e95a49

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 53bc4ba12e7468be34a7ca2ee837ee5c8bd5755b25c12f665af9339cae37e265
MD5 abae1411a17887580783b30ebc261318
BLAKE2b-256 dfe60f3835895f9d0b8900ca4a7196932b13b74156ad9ffb76e7aacfc5bb4157

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5a62f88c629035913f506df03f710c48fc8bb9637191933f27c67088d5ca136
MD5 56836a1f1c3c6eeb950cf04f3cc4d4a8
BLAKE2b-256 85a252e6760d352584ae1ab139d97647bdc51d1eb7d480b688fe69c72616c956

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.7.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.7

File hashes

Hashes for torchaudio-2.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2ba4df6e3ad35cb1e5bd162cf86b492526138f6476f5a06b10725b8880c618eb
MD5 162124419ba6e4d30806e10af1f95408
BLAKE2b-256 b3e0ff0ac4234798a0b6b1398fa878a2e7d22f1d06d4327feb312d9e77e079bd

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6bb1e6db22fa2aad6b89b2a455ec5c6dc31df2635dbfafa213394f8b07b09516
MD5 6f2f3de688ae92bc8e67edc6f04c7b3e
BLAKE2b-256 7ddc7569889c1fc95ebf18b0295bc4fdebafbbb89ba9e0018c7e9b0844bae011

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c089dbfc14c5f47091b7bf3f6bf2bbac93b86619299d04d9c102f4ad53758990
MD5 3a055cb6f1856be9c9b31ac4a3cfd27c
BLAKE2b-256 e68c35eea5138ccd4abf38b163743d5ab4a8b25349bafa8bdf3d629e7f3036b9

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4739af57d0eb94347d1c6a1b5668be78a7383afe826dde18a04883b9f9f263b1
MD5 62f05e7509a828fc6c541b9358ce51e0
BLAKE2b-256 da71bfc6d2b28ede6c4c5446901cfa4d98fa25b2606eb12e641baccec16fcde0

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.7

File hashes

Hashes for torchaudio-2.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 30e21f043f5cc50f703c2cf0de75633e2c720227f9bf848ffc9b8b987871b3fc
MD5 55775f2ef769cc2b8d1ace43aaacc669
BLAKE2b-256 269900764e98c82d0b48a1e1fd059a0f10cf1bec741013a7e9c05077bd1fd481

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9ce8aed225d5ce65705d30f6ef8e457d329fe6ea0b8729ad953ba99e87da264e
MD5 07903a445f6243bda5a031d8576d3ea8
BLAKE2b-256 377b0bf5da00d883b241bd4986e2d26dc1aabd16cc860c4c5d4bc9237e6350c3

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e8b2da11a7f7782b00b823c99e812eb00ee8b3455ad474f8fd42a0da0bc4f46a
MD5 c40539900d50a68a9ac8abc016edd5f3
BLAKE2b-256 a5576f7c8b9c00970248498152549f004587db0a83e6caad0025c9723994ffc9

See more details on using hashes here.

File details

Details for the file torchaudio-2.7.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.7.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a07100fe2cf7af4fa69d8cb046a2b74046612621a1a548afa5af1c69e02eaf81
MD5 68e763a801ee4701b4a29ec90cc7ef05
BLAKE2b-256 3b6782ee183a867d5138b594a5c07be403d8efd0e010b3ea8a7e135058e965cd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page