Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

[!NOTE] We have transitioned TorchAudio into a maintenance phase. This process removed some user-facing features. These features were deprecated from TorchAudio 2.8 and removed in 2.9. Our main goals were to reduce redundancies with the rest of the PyTorch ecosystem, make it easier to maintain, and create a version of TorchAudio that is more tightly scoped to its strengths: processing audio data for ML. Please see our community message for more details.

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch},
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

torchaudio-2.9.0-cp314-cp314t-win_amd64.whl (669.3 kB view details)

Uploaded CPython 3.14tWindows x86-64

torchaudio-2.9.0-cp314-cp314t-manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.28+ x86-64

torchaudio-2.9.0-cp314-cp314t-manylinux_2_28_aarch64.whl (477.8 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.28+ ARM64

torchaudio-2.9.0-cp314-cp314t-macosx_11_0_arm64.whl (813.5 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

torchaudio-2.9.0-cp314-cp314-win_amd64.whl (665.0 kB view details)

Uploaded CPython 3.14Windows x86-64

torchaudio-2.9.0-cp314-cp314-manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

torchaudio-2.9.0-cp314-cp314-manylinux_2_28_aarch64.whl (475.9 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ ARM64

torchaudio-2.9.0-cp314-cp314-macosx_11_0_arm64.whl (810.5 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

torchaudio-2.9.0-cp313-cp313t-win_amd64.whl (669.3 kB view details)

Uploaded CPython 3.13tWindows x86-64

torchaudio-2.9.0-cp313-cp313t-manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ x86-64

torchaudio-2.9.0-cp313-cp313t-manylinux_2_28_aarch64.whl (477.7 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ ARM64

torchaudio-2.9.0-cp313-cp313t-macosx_11_0_arm64.whl (813.5 kB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

torchaudio-2.9.0-cp313-cp313-win_amd64.whl (665.3 kB view details)

Uploaded CPython 3.13Windows x86-64

torchaudio-2.9.0-cp313-cp313-manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

torchaudio-2.9.0-cp313-cp313-manylinux_2_28_aarch64.whl (475.7 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

torchaudio-2.9.0-cp313-cp313-macosx_12_0_arm64.whl (809.1 kB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

torchaudio-2.9.0-cp312-cp312-win_amd64.whl (665.4 kB view details)

Uploaded CPython 3.12Windows x86-64

torchaudio-2.9.0-cp312-cp312-manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

torchaudio-2.9.0-cp312-cp312-manylinux_2_28_aarch64.whl (476.0 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

torchaudio-2.9.0-cp312-cp312-macosx_11_0_arm64.whl (809.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

torchaudio-2.9.0-cp311-cp311-win_amd64.whl (664.7 kB view details)

Uploaded CPython 3.11Windows x86-64

torchaudio-2.9.0-cp311-cp311-manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

torchaudio-2.9.0-cp311-cp311-manylinux_2_28_aarch64.whl (475.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

torchaudio-2.9.0-cp311-cp311-macosx_11_0_arm64.whl (808.4 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

torchaudio-2.9.0-cp310-cp310-win_amd64.whl (663.9 kB view details)

Uploaded CPython 3.10Windows x86-64

torchaudio-2.9.0-cp310-cp310-manylinux_2_28_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

torchaudio-2.9.0-cp310-cp310-manylinux_2_28_aarch64.whl (473.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

torchaudio-2.9.0-cp310-cp310-macosx_11_0_arm64.whl (806.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.9.0-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.9.0-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 669.3 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 cbf5d6da8fd2ed545c78218b39fd6aacaa4dd5e265c5f85b248a2fac223f0bd6
MD5 6f012b1c948516daef298f5082a146a3
BLAKE2b-256 b9d6d007f6bc55a16a86e64e9bba295b90485011cc6a113d8f56b503b4f34a7d

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp314-cp314t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0a234634e1142fb2652c49e935a98b4d9656fd0af9e4aa14b1b05a80c3cf8e78
MD5 c22f2014f7176d390b1e8d36a1729c9e
BLAKE2b-256 6f1c30272b71ae08817eaca00bb856ebef25dd44041329579903c1915b57f0c9

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp314-cp314t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 742143d9d62769bc4b9a2977ca4f4720e0a5e922bdc5df585c155e0a1f545461
MD5 d1d16e2dba9ce7f136d60fbd549f5971
BLAKE2b-256 ab65a35a182519b40dcd2cedaf5fdcac6f724ae2451c534dfcece6ff5f85f983

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93358d8f2f24969ba3f368f4eec33295df830af54836c7fd3336740228f9af16
MD5 e8df5f60dc5e77c7992bcef6282c6edf
BLAKE2b-256 7d1ad3cd6b67b5c68ff4211be923978d1d7c10ea2f44f826d4cd15b775f52c11

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.9.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 665.0 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 ed6df9f14431e13498b984dc87df1aabb2156b9ce0ce7268ce4a61650197310a
MD5 2a39cfd65c17b60cb846cf74fe47cab8
BLAKE2b-256 63134407b79ddedc9ea95d88fa54c3758df21f0117683fceba4bacd98ceaa772

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 631b0f43564a25e27e615b217454c334f52162679f39ae10b9fa7562ed587dfc
MD5 0fc3feb1300b63b4eb33fb047bfb8cb4
BLAKE2b-256 4bbb7ca64ed0556afa08d3a7a47c887ee9b1c4f3eebd193baf47505b6fac479c

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp314-cp314-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 69f46f21bd67e90ade33a7d0f0cf98270cd61b98f5f8249d3893be0a16b3e31f
MD5 4723519d6b4af8599448979bc7037ad2
BLAKE2b-256 a800aa8ed83a169a87af72d6cdc17e0350f418b3cba3bd7397b0cca873274789

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3fa41447a21103fcde930b4ad2bd2634565a0becff1a5425535b4f0116c0d5df
MD5 928a56251ab6ac38423e675da48159b2
BLAKE2b-256 97addb50c49d73d1904152bbaaaa281e03a41ec519dd6a9df48cc69ea5cd48b9

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.9.0-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 669.3 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 3fe9cac0c2ee713e07f8c88d09528d55e0fa74987b0122e27911dfb720f39054
MD5 dde8e875355b893f378f6e2f9d77bdd3
BLAKE2b-256 f241d9876f5b19b4b2f98a6131d1a98ee6d5d8f707c01311bbba7cc3bb02f4bf

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3d5657d929d6ca07b08cfa005988f2ea8caacf9af42f20bc7eff10f88812ce30
MD5 d64547d220d1d9fbffe84b5f59a5b5d3
BLAKE2b-256 cfd3d085cd76413b9f3f792e61933235d982caf5cdbdf60f0e4fdae71879becc

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 276871d6f5fed5268a87c5da303a13ca2e06b9d29a4c44663b960f0a2e2f46d7
MD5 cc43d93518b688f15192e0e074e486df
BLAKE2b-256 1ac18d0481fc921cb72d6cadbacd338fa71db0052e8fdb1bf33127c694bbf257

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 967d664477fb91dffad82ef64ea3695801c0cc35304baec71be875b569440872
MD5 f8ecf6a298e5bb5d1818c651c99b3ce5
BLAKE2b-256 e34188b989aab1e11134d858350196fcf3afd4c2a6821d74efb3c1b9ab23b8cf

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.9.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 665.3 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7d3926129389d934aa048bd6c6f68fbf3ef26828ebbbbeac99794ea00e90dc1c
MD5 c9ebadb7285995e752005dc168f0440e
BLAKE2b-256 be535f9adbea55e48f91532ee4f041283900939ee5cb6bc1395587214e67a629

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 266d304dd4ed738a10148b020e3d066e81272ee851f6f92193fe549df96af868
MD5 2e74eb72a9b71d4b51eb01d991ee7cb7
BLAKE2b-256 26db10ba200f90b76f7b859f46b5ba30cdded69f71bcb0fe3c59bb215532cd2b

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1eb0d1dac8cefbc4a54afb21aac72a1c25a91f73e9c3bd85f6684930a4a1be5d
MD5 2a00eb929af7b885a2106a6b4c523f9a
BLAKE2b-256 09618f7b875a2d879666f2f121e458817703e5499988a86105d2a25afecb9987

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5549c25db4c2da306e179e9aa99980e7f5b1826a8d2d7de08125f3943a5620b2
MD5 9d0e61233fded4a4c5ff39251fdf041c
BLAKE2b-256 6c66974371d4e4042d186931b72365817d9d3a509f2bc570888a48612448c060

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.9.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 665.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for torchaudio-2.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 82117e3a605f2959dc09b4cd8a11178d6e92727d5f85e5d4f9fe47502f84ee96
MD5 82c78b5314eae9a2e57247cb23796282
BLAKE2b-256 d7eb58b05f75d12f69ccc460893a20c999da082e063082120ed06e05cca3a053

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 508318a2130b40ad51378f90caf8727a4bd3ac2b296f2b90c900b44e6068a940
MD5 6999d5d54a8b30ffd75b75db79639b60
BLAKE2b-256 f09c58b8b49dfba2ae85e41ca86b0c52de45bbbea01987490de219c99c523a58

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7f93388b6e536c14d6015b6f75277a8b45efc532f61b35adc1ed06c98a86003e
MD5 68a365269cf6b0aafc5399fd1e4a3b6b
BLAKE2b-256 bed525e58745defe9d05893d3cba5c0e1a76aeaac503ac5ec4d9f83c871df71c

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab4cbcccfd873b0fb41fcb39c9869e59ef84bb95b093f6f58e2d05172a7500d2
MD5 e71be55d2790188f545fbb8feb0a0423
BLAKE2b-256 b7633c0ede3aa3d19a8a6698ddd107fa88660549360b51bf8ce2717cd498d800

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 664.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for torchaudio-2.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 840487d748128ded45bd65b213b55db701ad047544e77ae3c57ea48f55623a77
MD5 8113dfed59fb2ed5fd5da0eff9e92eb1
BLAKE2b-256 966493944c24d7ec76dff3315f9aaf382e86d09fa2c865942c3d6b48666e5b1d

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 86b15ce1d74814d5ca14bfac0d3b33f325c8cac4a6f09dcc5b82748133a96792
MD5 f3b4ce12dab3e859382e5a7db016c1ce
BLAKE2b-256 f0417aba77bc89d06df993c1519b66b7e0b09661d297d0eb8c044ab2c5af665f

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 914f1408142bdeda1ca9f834dd04967625fccc75893bd1504a018a13a04f1b66
MD5 f71da338c1e561dd040521ab68ca51b1
BLAKE2b-256 551a48d528cae6050b9a5f07c1c942b547143237e9f080f4a2ccb80ba88486df

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 662eb49ab25e1a2b7367bb072a8ad05c8a4b650ebbe7090a5af1a1eb1d40767c
MD5 9e8d1aaebad8bef5865897b02580fc3a
BLAKE2b-256 d5a27696b9579ad0c40b78ce2774fb24875c43257f3d0d24540e1cfa946c13b4

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: torchaudio-2.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 663.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for torchaudio-2.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4ed556da9de16f69ccbe804df510ae8fefdf995cbdc2fcf26ea7532d25463326
MD5 c877c204a80a9dd0390ec86382b27d6c
BLAKE2b-256 43aff12349d7cb325b9b36452192953eb8c4ca9a6c28c8335c2d2f5e576be7f3

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 905f2c916e392b6dde375c002abe98f6fc64705fdf1192c90a6df2de235305f3
MD5 a6c921ea535283a250d0dfae545b83f0
BLAKE2b-256 392775184741da9aa1e94ec136319781e1275a560d1c311a293cc22aba747863

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1e84e45f74bf5b208b5ce59b36f26ec1e5f63596542c3ebee6edeadf85e73563
MD5 6479667f647a519b656fd123e0fc506e
BLAKE2b-256 0bc2212181b1df762487462b3a092f6a9ae6ba87df02df71bb2121c100b13b8d

See more details on using hashes here.

File details

Details for the file torchaudio-2.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 214d2e8bec2b204ac3f552f3dceae51550e06a91c5863d5dc341d81691ef655e
MD5 b5dac91e9b91659a5cf976f63bf8be1f
BLAKE2b-256 78aa7fce684dc0e21f8ea3ecf4a9f37253f8fa0b51aa0973202b58f33b9dc031

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page