Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

[!NOTE] We have transitioned TorchAudio into a maintenance phase. This process removed some user-facing features. These features were deprecated from TorchAudio 2.8 and removed in 2.9. Our main goals were to reduce redundancies with the rest of the PyTorch ecosystem, make it easier to maintain, and create a version of TorchAudio that is more tightly scoped to its strengths: processing audio data for ML. Please see our community message for more details.

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch},
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

torchaudio-2.10.0-cp314-cp314t-win_amd64.whl (479.0 kB view details)

Uploaded CPython 3.14tWindows x86-64

torchaudio-2.10.0-cp314-cp314t-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.28+ x86-64

torchaudio-2.10.0-cp314-cp314t-manylinux_2_28_aarch64.whl (393.4 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.28+ ARM64

torchaudio-2.10.0-cp314-cp314t-macosx_11_0_arm64.whl (742.5 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

torchaudio-2.10.0-cp314-cp314-win_amd64.whl (475.2 kB view details)

Uploaded CPython 3.14Windows x86-64

torchaudio-2.10.0-cp314-cp314-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

torchaudio-2.10.0-cp314-cp314-manylinux_2_28_aarch64.whl (393.1 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ ARM64

torchaudio-2.10.0-cp314-cp314-macosx_11_0_arm64.whl (739.5 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

torchaudio-2.10.0-cp313-cp313t-win_amd64.whl (479.0 kB view details)

Uploaded CPython 3.13tWindows x86-64

torchaudio-2.10.0-cp313-cp313t-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ x86-64

torchaudio-2.10.0-cp313-cp313t-manylinux_2_28_aarch64.whl (393.4 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ ARM64

torchaudio-2.10.0-cp313-cp313t-macosx_11_0_arm64.whl (742.4 kB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

torchaudio-2.10.0-cp313-cp313-win_amd64.whl (475.5 kB view details)

Uploaded CPython 3.13Windows x86-64

torchaudio-2.10.0-cp313-cp313-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

torchaudio-2.10.0-cp313-cp313-manylinux_2_28_aarch64.whl (392.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

torchaudio-2.10.0-cp313-cp313-macosx_12_0_arm64.whl (737.2 kB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

torchaudio-2.10.0-cp312-cp312-win_amd64.whl (475.5 kB view details)

Uploaded CPython 3.12Windows x86-64

torchaudio-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

torchaudio-2.10.0-cp312-cp312-manylinux_2_28_aarch64.whl (392.0 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

torchaudio-2.10.0-cp312-cp312-macosx_11_0_arm64.whl (737.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

torchaudio-2.10.0-cp311-cp311-win_amd64.whl (474.8 kB view details)

Uploaded CPython 3.11Windows x86-64

torchaudio-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

torchaudio-2.10.0-cp311-cp311-manylinux_2_28_aarch64.whl (391.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

torchaudio-2.10.0-cp311-cp311-macosx_11_0_arm64.whl (736.4 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

torchaudio-2.10.0-cp310-cp310-win_amd64.whl (474.0 kB view details)

Uploaded CPython 3.10Windows x86-64

torchaudio-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

torchaudio-2.10.0-cp310-cp310-manylinux_2_28_aarch64.whl (390.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

torchaudio-2.10.0-cp310-cp310-macosx_11_0_arm64.whl (734.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.10.0-cp314-cp314t-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 e49f6a18a8552620c4394f8529b7551eda9312d46dfdd3500bd2be459c86aea4
MD5 7263631d1662e2e83756df5e08f95977
BLAKE2b-256 5d610e1f464463b85bc677036faffdfd23493aa17e8c3fc3a649abca8c019701

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp314-cp314t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f7aa33a8198e87949896e16ea245ea731906445becdf10130e8823c68494a94a
MD5 23b4b74530cef7b2bd992a121e860b34
BLAKE2b-256 e168e37e8fbbae986afa80f8851e08fc017eb8ae5f7b398ee28ed92303da163e

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp314-cp314t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ed912de8ec1b400e17a5172badcfcddc601a9cd4e02d200f3a9504fc8e54961c
MD5 b0c8057fbb0f217166f718703482b1cf
BLAKE2b-256 538a946aa07393845b918d318b5e34b3bd0359fd27fc9fac10a85fae2bb86382

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13bdc1bde0c88e999699d1503304a56fc9dea6401b76bc08a5f268368129d46c
MD5 b343840de62aef210726903982bcfb42
BLAKE2b-256 c19bcd02f8add38bd98761548b0821a5e54c564117a9bbeafaf95f665ab0fd72

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 4711c2a86a005685ca3b5da135b2f370d81ac354e3dcb142ef45fe2c78b9c9c4
MD5 f23bb97f328f738baaa8efdb0315203d
BLAKE2b-256 7f4898e6710a4601e190bc923c3683629c29d41fb18a818a9328515541f023ed

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 77f6cf11a3b61af1b0967cd642368ecd30a86d70f622b22410ae6cb42d980b72
MD5 60703f826f294cb1e356dcfc7b9d2673
BLAKE2b-256 9d0fa0cf0ebc6f71b1868ea056dd4cd4f1a2244b8da8bc38372a1adc984a7c1f

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp314-cp314-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b2d5e11a2bec08f02a4f5fb7d1902ff82d48c533a27ceedc21e6ade650cf65b3
MD5 6557c1a5575de041e39556a97580fcc8
BLAKE2b-256 57a1ef5571406858f4ea89c18d6ad844d21cb9858708149e6bbd9a789ee30ea5

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f2897fbf776d55afcb5f6d9b7bdfaea850ca7a129c8f5e4b3a4b025c431130d
MD5 a9205723d73cd83d2b3cb1489c003a71
BLAKE2b-256 cc5c0e54b162bd0d1ec2f87b545553af839f906b940888d0122cdef04b965385

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 f1afa53146a5655258d3a86e689c6879dfe78581d9bee9ef611ace98722f86bb
MD5 f845328b53c0b9394048e2e2ac5fe0c1
BLAKE2b-256 5727270c26890f43838e8faa5d3e52f079bd9d9d09f9a535a11cf6b94e20ed21

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 da1081d1018a1e95f5a13947402aeb037cf5ac8861219a6164df004898a96bb1
MD5 75ab05210071364b246bd33abd502d52
BLAKE2b-256 8e1ff91fcb9dd47a19b720fb48042a2f6f023651948e73726e98fff60d5ed5c7

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b41b254d958632dc00dc7768431cadda516c91641d798775cbb19bcd4f0d2be4
MD5 938ec4b098e29f062713c4eae87ae361
BLAKE2b-256 438c653e7f67855424bf3b7cbb48335f8316f7fb02bb01a6cab38f6bf9555676

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6cfe98ef0ea9bee6d6297493ce67ce0c54a38d80caf6535a3ae48900fd5f3769
MD5 3a3ec6554c1cfbc3662ec7031849c677
BLAKE2b-256 482930bcce0f17a8279b051b09250993691a828f89a03278306b23571c18df04

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 99e74d1901742bc10961d807fe75c0dd9496f4a4a4ff4bb317c5de4a0b6f24e6
MD5 5f06e56ff1a0f4b41baf0e04d052cb0a
BLAKE2b-256 73cf0e48d67788c935e3b3d00e6f55a930a54a67f432e04c33ef80a38cb764fd

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3057c4286db5673d266124a2a10ca54e19f516772e9057f44573a7da5b85e328
MD5 db4cf736fab4c6cc36a8724b960053ed
BLAKE2b-256 8ed8405c80c57dc68ca5855bddfaae57c3d84ea7397bf1eb2aa5d59c9fa1d3a9

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5bc39ff3ea341097ce1ab023dd88c9dd8ca5f96ebf48821e7d23766137bb55d7
MD5 62ce0bc7b5e6e834fdf9d0f411bdfea3
BLAKE2b-256 49fd831c2595c81b17141180ca11ab3c0836cc544ef13e15aa0e7b2cb619e582

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8fd38d28ee150c584d3ee3b05f39e021f0ad8a8ec8fec1f26dfe150c9db9b2f5
MD5 643c895ffaffff8356293851ac246d7f
BLAKE2b-256 b602341e7bd588355f82c5180103cb2f8070a72ab1be920ab27553a1135d4aa6

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7f76a01ecebf1869e1f2c50a261f1cf07e5fccb24402b4e9bbb82d6725b9c7dd
MD5 e84a4ddc2c88508042c5450673e732c8
BLAKE2b-256 bea0da53c7d20fac15f66f8838653b91162de1bf21fb40fee88cf839e4ef5174

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0e77b2956448d63790a99beed0b74ac8b8cd3a94dcdd9ad01974411078f46278
MD5 688bd652384f2f313685246c3d7f0551
BLAKE2b-256 9825e55a30d7138f8fe56ed006df25b0a3c27681f0ec7bc9989e1778e6d559c3

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 42b148a0921a3721abd1f6ae098b1ec9f89703e555c4f7a0d44da87b8decbcb9
MD5 4465ae677d429e4925fee93f942aa3ae
BLAKE2b-256 ea3fdf620439a76ece170472d41438d11a1545d5db5dc9f1eaeab8c6e055a328

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d0fbdbfd2f621c51d28571050d6d0c7287791034e5c7303b31480af1258f33f
MD5 30f7004fbf71ce3929b1ab836349d76d
BLAKE2b-256 0f3628a6f3e857616cf7576bdbf8170e483b8c5d0a1f8d349ecb2b75921236aa

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4c6e9609046143b30a30183893d23ff1ce5de603dbe914b3cce5cc29f5aa5a9c
MD5 3be675079276227f8b6846428336ad99
BLAKE2b-256 6926cd2aec609b4f8918e4e85e5c6a3f569bc7b5f72a7ecba3f784077102749c

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b2c77fb9114dd463dc805560bf55a1ac2a52e219794cc32b7b32cf2aeffd2826
MD5 6a185a9d1e9fc502b3f1e68e574bff76
BLAKE2b-256 13aea2a34a64947c4fa4a61b4c86d8f36fbcb4ebfec30fdde140267db260f96c

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 87c841a21e82703ebd4a29170c4e60c25a2b47312dc212930087ad58965ac0c8
MD5 20b3d9e7aac294d3a62a02a1c5126d0c
BLAKE2b-256 6fb7c66dc34a27441d78997e20d0ffe2f5ad73db9f7b1267511be255bb94ac9b

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bcab0e39eb18da84cba1a0c87f600abb6ce97c882200cb46e841caea106f037f
MD5 2e95f0707ff1597aacfc654115929693
BLAKE2b-256 5ce7401fe1d024bf9352371d854be6f339ad9928669e6bc8a5ba08e9dbce81cf

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 013079d1ba2a652184703e671b8339cbc7991f17e4ed927071fe7635f908a4a1
MD5 565089a4276598f021200af77dc9b610
BLAKE2b-256 6e03d1898db1bf7ecd47ca9b4e1b70927597d236cf721e3736d953d555901832

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 316cdb15fb37290fca89894b095d97b4dc14a90c4c61148ae5c96bb334d962cd
MD5 90734ffb629a65d268a2b5ebfea6cf88
BLAKE2b-256 43aca14425fddd1cf56bb052a3bfd38880258008f8c3cd17f37bba55b3a88ce7

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cfb2ad4b7847d81931989127d803487263c8284f21156e9000daec1ac16c0831
MD5 ed641fa49853a0a4125a43e98b1a8c3f
BLAKE2b-256 9bd641f25f9ae9b37c191bed4cd474e403626685d2be8f7d20d011e6601fede1

See more details on using hashes here.

File details

Details for the file torchaudio-2.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4cde383582a6240c1315443df5c5638863e96b03acf1cb44a298aff07a72d373
MD5 f5488d778c7514348681b41da559c0e1
BLAKE2b-256 045988ab8ebff9d91f1f1365088b30f1b9ccce07c5eeac666038a5dee5e2f9b1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page