Skip to main content

A rhythm feature extractor and classifier for MIDI files

Project description

groover 0.0.4

Installation

groover is a beat-by-beat rhythm feature clustering and token generation tool for .mid files. You can download groover using pip:

pip install groover

To check if groover is successfully installed, type python in the terminal, and do the following:

>>> from groover import RhythmKMeans
>>> type(RhythmKMeans())
<class 'groover.classifier.RhythmKMeans'>

Documentation

data

get_heat_maps(midi_obj, n_bins=24, beat_resolution=480, rid_melody=False, min_pitch=0, max_pitch=127)

Returns a numpy array of shape (n, n_bins), where n is the number of beats in midi_obj. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

get_dataset(midi_objs, n_bins=24, beat_resolution=480, rid_melody=False, min_pitch=0, max_pitch=127)

Returns a numpy array of shape (n, n_bins), where n is the total number of beats of midi objects in midi_objs. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: list
    • the list containing midi objects to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

RhythmKMeans

RhythmKMeans classifies rhythmic heat maps and use them to predict and evaluate rhythmic tokens.

RhythmKMeans.__init__(self, cluster_centers=None)

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.load_cluster_centers(self, cluster_centers)

Loads cluster_centers as the classifier's cluster centers.

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.fit(self, dataset, k, max_iter=1000, epsilon=1e-6)

Makes the classifier's cluster centers align with the dataset.

Parameters
  • dataset: numpy.ndarray
    • a numpy array of shape (n, 24), where n is the total number of beats in the dataset, with each row being the rhythmic heat map of a beat
  • k: int
    • the number of clusters to be generated
  • max_iter: int
    • the maximum number of iterations to perform
  • epsilon: float
    • if the average distance of the cluster centers between iterations is lower than epsilon, clustering ends early

RhythmKMeans.k(self)

Returns the number of clusters of the classifier.

RhythmKMeans.is_empty(self)

Returns True if the classifier is not fitted to any data yet, False otherwise.

RhythmKMeans.add_beat_clusters(self, midi_obj, beat_resolution=480, preprocessing='default', min_pitch=0, max_pitch=127)

Adds markers with rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add beat-by-beat rhythm markers to
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

RhythmKMeans.get_rhythm_scores(self, midi_obj, beat_resolution=480, min_pitch=0, max_pitch=127)

Returns a tuple of numpy arrays. The first is the rhythm types in shape (n,) that is specified by the markers in the midi object, and the second array is the alignment score between the notes and the rhythm type in shape (n,). n is the number of beats in the midi object.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to be evaluated
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

groover-0.0.4.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

groover-0.0.4-py3-none-any.whl (7.8 kB view details)

Uploaded Python 3

File details

Details for the file groover-0.0.4.tar.gz.

File metadata

  • Download URL: groover-0.0.4.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.0.4.tar.gz
Algorithm Hash digest
SHA256 4109c6062376bff3e2688bf72848f601c4b184291f5fc5431e5dc70f69519064
MD5 31e4de1002dfdb94e677da8b5cb43637
BLAKE2b-256 23e016711393dc8c667603b9a703738568a2e152cde5d9be8f92d5df2f3627b3

See more details on using hashes here.

File details

Details for the file groover-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: groover-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 7.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 31e2d57d6845e966b2dc97d3c8c5d3f2c4f721dd37b1438665f69f3d695b8c25
MD5 002826337aa497515ca07fddb6161039
BLAKE2b-256 d2d8ba81bfdcebc671084948d73f151d7f3654a95ed2c581019fb0da9365f217

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page