Skip to main content

A rhythm feature extractor and classifier for MIDI files

Project description

groover 0.1.0

Installation

groover is a beat-by-beat rhythm feature clustering and token generation tool for .mid files. You can download groover using pip:

pip install groover

To check if groover is successfully installed, type python in the terminal, and do the following:

>>> from groover import RhythmKMeans
>>> type(RhythmKMeans())
<class 'groover.classifier.RhythmKMeans'>

Documentation

data

get_heat_maps(midi_obj, n_bins=24, beat_resolution=480, rid_melody=False, is_drum=False, pitches=range(0, 128))

Returns a numpy array of shape (n, n_bins), where n is the number of beats in midi_obj. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • is_drum: bool
    • whether drum notes are valid or non-drum notes are valid
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

get_drum_maps(midi_obj, n_bins=96, bar_resolution=1920, drums=None)

Returns a numpy array of shape (n, len(drums), n_bins), where n is the number of bars in midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to get heat maps from
  • n_bins: int
    • the number of bins in a bar
  • beat_resolution: int
    • the number of ticks per bar
  • drums: list
    • the list of drums that will be used, options are ['bass_drum', 'closed_hihat', 'crash', 'floor_tom', 'open_hihat', 'pedal_hihat', 'ride', 'snare', 'tambourine', 'tom']
    • is set to ['bass_drum', 'closed_hihat', 'snare'] by default

get_dataset(midi_objs, n_bins=24, beat_resolution=480, rid_melody=False, is_drum=False, pitches=range(0, 128))

Returns a numpy array of shape (n, n_bins), where n is the total number of beats of midi objects in midi_objs. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: list
    • the list containing midi objects to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • is_drum: bool
    • whether drum notes are valid or non-drum notes are valid
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

get_dataset(midi_objs, n_bins=96, drums=None)

Returns a numpy array of shape (n, len(drums), n_bins), where n is the total number of beats of midi objects in midi_objs. Bar solutions are subject to the midi objects' ticks per beat, and only midis in power of 2 rhythm (2, 4, 8...) will be accepted.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to get heat maps from
  • n_bins: int
    • the number of bins in a bar
  • drums: list
    • the list of str containing the names of the drums that will be used, options are ['bass_drum', 'closed_hihat', 'crash', 'floor_tom', 'open_hihat', 'pedal_hihat', 'ride', 'snare', 'tambourine', 'tom']
    • is set to ['bass_drum', 'closed_hihat', 'snare'] by default

RhythmKMeans

RhythmKMeans classifies rhythmic heat maps and use them to predict and evaluate rhythmic tokens.

RhythmKMeans.__init__(self, cluster_centers=None)

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.load_cluster_centers(self, cluster_centers)

Loads cluster_centers as the classifier's cluster centers.

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.fit(self, dataset, k, max_iter=1000, epsilon=1e-6)

Makes the classifier's cluster centers align with the dataset.

Parameters
  • dataset: numpy.ndarray
    • a numpy array of shape (n, 24), where n is the total number of beats in the dataset, with each row being the rhythmic heat map of a beat
  • k: int
    • the number of clusters to be generated
  • max_iter: int
    • the maximum number of iterations to perform
  • epsilon: float
    • if the average distance of the cluster centers between iterations is lower than epsilon, clustering ends early

RhythmKMeans.k(self)

Returns the number of clusters of the classifier.

RhythmKMeans.is_empty(self)

Returns True if the classifier is not fitted to any data yet, False otherwise.

RhythmKMeans.add_beat_clusters(self, midi_obj, beat_resolution=480, preprocessing='default', pitches=range(0, 128))

Adds markers with rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add beat-by-beat rhythm markers to
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

RhythmKMeans.get_rhythm_scores(self, midi_obj, beat_resolution=480, pitches=range(0, 128))

Returns a tuple of numpy arrays. The first is the rhythm types in shape (n,) that is specified by the markers in the midi object, and the second array is the alignment score between the notes and the rhythm type in shape (n,). n is the number of beats in the midi object

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to be evaluated
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

DrumRawClassifier

DrumRawClassifier classifies drum heat maps and use them to predict and evaluate rhythmic tokens.

DrumRawClassifier.fit(self, dataset, k=64, indices=None, quantize=True)

Makes the classifier's rhythm classes align with the dataset.

Parameters
  • dataset: numpy.ndarray
    • a numpy array of shape (n, n_drums, n_bins), where n is the total number of beats in the dataset and n_drums is the number of drums in the dataset
  • k: int
    • the number of rhythm types to be generated
  • indices: list
    • the indices of the drums to be used in dimension 1, should be a list of int.
  • quantize: True
    • if quantize is set to True, then drum notes that are not on the 16th note time will be disregarded

DrumRawClassifier.add_bar_class(self, midi_obj, bar_resolution=1920, drums=None)

Adds markers with rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add bar-by-bar drum rhythm markers to
  • bar_resolution: int
    • the number of ticks per bar
  • drums: list
    • the list of str containing the names of the drums that will be used, options are ['bass_drum', 'closed_hihat', 'crash', 'floor_tom', 'open_hihat', 'pedal_hihat', 'ride', 'snare', 'tambourine', 'tom']
    • is set to ['bass_drum', 'closed_hihat', 'snare'] by default
    • please make sure that the drums used during marker addition are the same as those during classifying

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

groover-0.1.0.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

groover-0.1.0-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file groover-0.1.0.tar.gz.

File metadata

  • Download URL: groover-0.1.0.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.1.0.tar.gz
Algorithm Hash digest
SHA256 45eed964ec714181fa26d969433d150e9e2a9823b83a27547015aab1c380c88a
MD5 2d479038dfd6054d5c3c786cfb41b6df
BLAKE2b-256 929ed26c9f5ef05ac8e3b46d78e1bf4ea2ad8524d0ba3558744d954bfc68e338

See more details on using hashes here.

File details

Details for the file groover-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: groover-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f9765d11c7ae9d77b4683f05e02a60079ac15e0a8e9304f18a9e518fa591faee
MD5 6791b3890688b0ce50d3ce67928e504f
BLAKE2b-256 48b23dff3afaba5aa9f772d07efdc30e5e6c4b63f536f7b2033c4823262ec9fc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page