Skip to main content

A rhythm feature extractor and classifier for MIDI files

Project description

groover 0.0.8

Installation

groover is a beat-by-beat rhythm feature clustering and token generation tool for .mid files. You can download groover using pip:

pip install groover

To check if groover is successfully installed, type python in the terminal, and do the following:

>>> from groover import RhythmKMeans
>>> type(RhythmKMeans())
<class 'groover.classifier.RhythmKMeans'>

Documentation

data

get_heat_maps(midi_obj, n_bins=24, beat_resolution=480, rid_melody=False, is_drum=False, pitches=range(0, 128))

Returns a numpy array of shape (n, n_bins), where n is the number of beats in midi_obj. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • is_drum: bool
    • whether drum notes are valid or non-drum notes are valid
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

get_dataset(midi_objs, n_bins=24, beat_resolution=480, rid_melody=False, is_drum=False, pitches=range(0, 128))

Returns a numpy array of shape (n, n_bins), where n is the total number of beats of midi objects in midi_objs. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: list
    • the list containing midi objects to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • is_drum: bool
    • whether drum notes are valid or non-drum notes are valid
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

RhythmKMeans

RhythmKMeans classifies rhythmic heat maps and use them to predict and evaluate rhythmic tokens.

RhythmKMeans.__init__(self, cluster_centers=None)

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.load_cluster_centers(self, cluster_centers)

Loads cluster_centers as the classifier's cluster centers.

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.fit(self, dataset, k, max_iter=1000, epsilon=1e-6)

Makes the classifier's cluster centers align with the dataset.

Parameters
  • dataset: numpy.ndarray
    • a numpy array of shape (n, 24), where n is the total number of beats in the dataset, with each row being the rhythmic heat map of a beat
  • k: int
    • the number of clusters to be generated
  • max_iter: int
    • the maximum number of iterations to perform
  • epsilon: float
    • if the average distance of the cluster centers between iterations is lower than epsilon, clustering ends early

RhythmKMeans.k(self)

Returns the number of clusters of the classifier.

RhythmKMeans.is_empty(self)

Returns True if the classifier is not fitted to any data yet, False otherwise.

RhythmKMeans.add_beat_clusters(self, midi_obj, beat_resolution=480, preprocessing='default', pitches=range(0, 128))

Adds markers with rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add beat-by-beat rhythm markers to
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

RhythmKMeans.get_rhythm_scores(self, midi_obj, beat_resolution=480, pitches=range(0, 128))

Returns a tuple of numpy arrays. The first is the rhythm types in shape (n,) that is specified by the markers in the midi object, and the second array is the alignment score between the notes and the rhythm type in shape (n,). n is the number of beats in the midi object.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to be evaluated
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

groover-0.0.8.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

groover-0.0.8-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file groover-0.0.8.tar.gz.

File metadata

  • Download URL: groover-0.0.8.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.0.8.tar.gz
Algorithm Hash digest
SHA256 e1221413263f7b616a4c1d109c88eb3c2775adc633bad5171f4b422df6f67763
MD5 5216e98b7d665ddcb4c5f0685937a69e
BLAKE2b-256 17a8d1aba3a4d1e4c630a2244e740a8ede8e7d642ab101094b429e400cb14da8

See more details on using hashes here.

File details

Details for the file groover-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: groover-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 aa3715ab3a4bb07f06b19fb5ebbbadea8474f2c872c99804959f2369cbddde30
MD5 40b6afaae7d4b30f261811021b73c323
BLAKE2b-256 dcbc1fab07b8e58e9caa91452ddf33b2b9e4c6a703e47c63a0fc0f4024de04ac

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page