Skip to main content

A rhythm feature extractor and classifier for MIDI files

Project description

groover 0.1.2

Installation

groover is a beat-by-beat rhythm feature clustering and token generation tool for .mid files. You can download groover using pip:

pip install groover

To check if groover is successfully installed, type python in the terminal, and do the following:

>>> from groover import RhythmKMeans
>>> type(RhythmKMeans())
<class 'groover.classifier.RhythmKMeans'>

Documentation

data

get_heat_maps(midi_obj, n_bins=24, beat_resolution=480, rid_melody=False, is_drum=False, pitches=range(0, 128))

Returns a numpy array of shape (n, n_bins), where n is the number of beats in midi_obj. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • is_drum: bool
    • whether drum notes are valid or non-drum notes are valid
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

get_dataset(midi_objs, n_bins=24, beat_resolution=480, rid_melody=False, is_drum=False, pitches=range(0, 128))

Returns a numpy array of shape (n, n_bins), where n is the total number of beats of midi objects in midi_objs. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: list
    • the list containing midi objects to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • is_drum: bool
    • whether drum notes are valid or non-drum notes are valid
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

RhythmKMeans

RhythmKMeans classifies rhythmic heat maps and use them to predict and evaluate rhythmic tokens.

RhythmKMeans.__init__(self, cluster_centers=None)

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.load_cluster_centers(self, cluster_centers)

Loads cluster_centers as the classifier's cluster centers.

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.fit(self, dataset, k, max_iter=1000, epsilon=1e-6)

Makes the classifier's cluster centers align with the dataset.

Parameters
  • dataset: numpy.ndarray
    • a numpy array of shape (n, 24), where n is the total number of beats in the dataset, with each row being the rhythmic heat map of a beat
  • k: int
    • the number of clusters to be generated
  • max_iter: int
    • the maximum number of iterations to perform
  • epsilon: float
    • if the average distance of the cluster centers between iterations is lower than epsilon, clustering ends early

RhythmKMeans.k(self)

Returns the number of clusters of the classifier.

RhythmKMeans.is_empty(self)

Returns True if the classifier is not fitted to any data yet, False otherwise.

RhythmKMeans.add_beat_clusters(self, midi_obj, beat_resolution=480, preprocessing='default', pitches=range(0, 128))

Adds markers with rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add beat-by-beat rhythm markers to
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

RhythmKMeans.get_rhythm_scores(self, midi_obj, beat_resolution=480, pitches=range(0, 128))

Returns a tuple of numpy arrays. The first is the rhythm types in shape (n,) that is specified by the markers in the midi object, and the second array is the alignment score between the notes and the rhythm type in shape (n,). n is the number of beats in the midi object

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to be evaluated
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • pitches: object with method __contains__(), such as list or set
    • the pitches to be considered valid

DrumRawClassifier

DrumRawClassifier classifies drum heat maps and use them to predict and evaluate rhythmic tokens.

DrumRawClassifier.__init__(self, n_bins=96, drums=None)

Parameters
  • n_bins: int
    • the number of bins in each bar
  • drums: list
    • the list of drums that will be used, options are ['bass_drum', 'closed_hihat', 'crash', 'floor_tom', 'open_hihat', 'ride', 'snare', 'tambourine', 'tom']
    • is set to ['bass_drum', 'closed_hihat', 'snare'] by default

DrumRawClassifier.fit_from_midi(self, midi_objs, k_all=100, k_separate=20, quantize=True)

Makes the classifier's rhythm classes align with the dataset.

Parameters
  • midi_objs: list
    • the list containing midi objects to get drum heat maps from
  • k_all: int
    • the number of composite rhythm types to be generated
  • k_separate: int
    • the number of drum-by-drum rhythm types to be generated for each drum type
  • quantize: True
    • if quantize is set to True, then drum notes that are not on the 16th note time will be disregarded

DrumRawClassifier.add_composite_bar_class(self, midi_obj, rid_empty=True)

Adds markers with composite drum rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add bar-by-bar drum rhythm markers to
  • rid_empty: bool
    • if rid_empty is set to True, then rhythm types with no drum notes will not be added as a marker

DrumRawClassifier.add_separate_bar_class(self, midi_obj, rid_empty=True)

Adds markers with separate drum rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add bar-by-bar drum rhythm markers to
  • rid_empty: bool
    • if rid_empty is set to True, then rhythm types with no drum notes will not be added as a marker

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

groover-0.1.2.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

groover-0.1.2-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file groover-0.1.2.tar.gz.

File metadata

  • Download URL: groover-0.1.2.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.1.2.tar.gz
Algorithm Hash digest
SHA256 627416077667f6eab5b1bd871c3440afc0baba8aec2293d2a97e8d03efaa0320
MD5 e1bf21d098be8a4e1cbaa9a118f0af49
BLAKE2b-256 385b739b9eebcc2debae9cfa4cd1db696d7d563bfb835ed7297f770380168a5b

See more details on using hashes here.

File details

Details for the file groover-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: groover-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 44c44518047720205b303708fffc23beec1189f93546b751e11da004b1e7f2e0
MD5 c96b3ceaf15c3d3df1328ff7a9e8b259
BLAKE2b-256 e088cf34b21638af4150daa075d183c1660bd8e4fc7ff4ab1b05d8662e91279c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page