Skip to main content

Python interface to running command-line and web-based MHC binding predictors

Project description

`|Build Status| <https://travis-ci.org/hammerlab/mhctools>`_ `|Coverage
Status| <https://coveralls.io/r/hammerlab/mhctools?branch=master>`_
`|DOI| <https://zenodo.org/badge/latestdoi/18834/hammerlab/mhctools>`_

mhctools
========

Python interface to running command-line and web-based MHC binding
predictors.

Example
-------

\`\`\`python from mhctools import NetMHCpan # Run NetMHCpan for alleles
HLA-A*01:01 and HLA-A*02:01 predictor = NetMHCpan(alleles=["A\*02:01",
"hla-a0101"])

scan the short proteins 1L2Y and 1L3Y for epitopes
==================================================

protein\_sequences = { "1L2Y": "NLYIQWLKDGGPSSGRPPPS", "1L3Y":
"ECDTINCERYNGQVCGGPGRGLCFCGKCRCHPGFEGSACQA" }

binding\_predictions =
predictor.predict\_subsequences(protein\_sequences,
peptide\_lengths=[9])

flatten binding predictions into a Pandas DataFrame
===================================================

df = binding\_predictions.to\_dataframe()

epitope collection is sorted by percentile rank
===============================================

of binding predictions
======================

for binding\_prediction in binding\_predictions: if
binding\_prediction.affinity < 100: print("Strong binder: %s" %
(binding\_prediction,)) \`\`\` ## API

The following MHC binding predictors are available in ``mhctools``: \*
``MHCflurry``: open source predictor installed by default with
``mhctools``, requires the user run ``mhcflurry-downloads fetch`` first
to download MHCflurry models \* ``NetMHC3``: requires locally installed
version of `NetMHC 3.x <http://www.cbs.dtu.dk/services/NetMHC-3.4/>`_ \*
``NetMHC4``: requires locally installed version of `NetMHC
4.x <http://www.cbs.dtu.dk/services/NetMHC/>`_ \* ``NetMHC``: a wrapper
function to automatically use ``NetMHC3`` or ``NetMHC4`` depending on
what's installed. \* ``NetMHCpan``: requires locally installed version
of `NetMHCpan <http://www.cbs.dtu.dk/services/NetMHCpan/>`_ \*
``NetMHCIIpan``: requires locally installed version of
`NetMHCIIpan <http://www.cbs.dtu.dk/services/NetMHCIIpan/>`_ \*
``NetMHCcons``: requires locally installed version of
`NetMHCcons <http://www.cbs.dtu.dk/services/NetMHCcons/>`_ \*
``IedbMhcClass1``: Uses IEDB's REST API for class I binding predictions.
\* ``IedbMhcClass2``: Uses IEDB's REST API for class II binding
predictions. \* ``RandomBindingPredictor``: Creates binding predictions
with random IC50 and percentile rank values.

Every binding predictor is constructed with an ``alleles`` argument
specifying the HLA type for which to make predictions. Predictions are
generated by calling the ``predict`` method with a dictionary mapping
sequence IDs or names to amino acid sequences.

Additionally there is a module for running the
`NetChop <http://www.cbs.dtu.dk/services/NetChop>`_ proteosomal cleavage
predictor: \* ``NetChop``: requires locally installed version of
`NetChop-3.1 <http://www.cbs.dtu.dk/services/NetChop/>`_

.. |Build
Status| image:: https://travis-ci.org/hammerlab/mhctools.svg?branch=master
.. |Coverage
Status| image:: https://coveralls.io/repos/hammerlab/mhctools/badge.svg?branch=master
.. |DOI| image:: https://zenodo.org/badge/18834/hammerlab/mhctools.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mhctools-1.6.1.tar.gz (32.7 kB view details)

Uploaded Source

File details

Details for the file mhctools-1.6.1.tar.gz.

File metadata

  • Download URL: mhctools-1.6.1.tar.gz
  • Upload date:
  • Size: 32.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for mhctools-1.6.1.tar.gz
Algorithm Hash digest
SHA256 78c1a38b20b0692450b16a8d720ef021bd1bab7735fc14a264d4f56df28230ce
MD5 81386cf23b1b8ef0a6e1f446733cd4e2
BLAKE2b-256 58e56f67462520af53e0380ffa4df4b11bc8743e41d4caa28fcf4b08f1484c2e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page