Skip to main content

A python toolbox to conduct non-invasive brain stimulation (NIBS) experiments.

Project description

pyNIBS

Preprocessing, postprocessing, and analyses routines for non-invasive brain stimulation experiments.

Latest Release Documentation pipeline status coverage report

pyNIBS provides the functions to allow cortical mappings with transcranial magnetic stimulation (TMS) via functional analysis. pyNIBS is developed to work with SimNIBS, i.e. SimNIBS' meshes and FEM results can directly be used. Currently, SimNIBS >=4.0 is supported.

See the documentation for package details and our protocol publication for a extensive usage examples. Free view only version of the paper: https://t.co/uv7CmVw6tp.

Installation

Via PiP:

pip install pynibs

Or clone the source repository and install the development branch for the most recent version:

git clone https://gitlab.gwdg.de/tms-localization/pynibs
cd pynibs
git checkout dev
pip install -e .

See here for more detailed installation instructions.

To import CED Signal EMG data use the export to .mat feature of Signal. To read .cfs files exported with CED Signal you might need to manually compile the libbiosig package.

Bugs

For sure. Please open an issue or feel free to file a PR.

Citation

Please cite Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi:10.1016/j.neuroimage.2021.118654 when using this toolbox in your research.

References

  • Weise*, K., Numssen*, O., Thielscher, A., Hartwigsen, G., & Knösche, T. R. (2020). A novel approach to localize cortical TMS effects. NeuroImage, 209, 116486. doi: 10.1016/j.neuroimage.2019.116486
  • Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi: 10.1016/j.neuroimage.2021.118654
  • Weise*, K., Numssen*, O., Kalloch, B., Zier, A. L., Thielscher, A., Hartwigsen°, G., Knösche°, T. R. (2023). Precise transcranial magnetic stimulation motor-mapping. Nature Protocols. doi: 10.1038/s41596-022-00776-6
  • Jing, Y., Numssen, O., Weise, K., Kalloch, B., Buchberger, L., Haueisen, J., Hartwigsen, G., Knösche, T. (2023). Modeling the Effects of Transcranial Magnetic Stimulation on Spatial Attention. Physics in Medicine & Biology. doi: 10.1088/1361-6560/acff34
  • Numssen*, O., Kuhnke*, P., Weise, K., & Hartwigsen, G. (2024). Electric field based dosing for TMS. Imaging Neuroscience. doi: 10.1162/imag_a_00106
  • Numssen, O., Martin, S., Williams, K., Knösche, T. R., & Hartwigsen, G. (2024). Quantification of subject motion during TMS via pulsewise coil displacement. Brain Stimulation, 17(5), 1045–1047. doi: 10.1016/j.brs.2024.08.009
  • Weise, K., Makaroff, S. N., Numssen, O., Bikson, M., & Knösche, T. R. (2025). Statistical method accounts for microscopic electric field distortions around neurons when simulating activation thresholds. Brain Stimulation, 18(2), 280–286. doi: 10.1016/j.brs.2025.02.007
  • Jing, Y., Numssen, O., Hartwigsen, G., Knösche, T. R., & Weise, K. (2024). Effects of Electric Field Direction on TMS-based Motor Cortex Mapping. bioRxiv. doi: 10.1101/2024.12.10.627753
  • Numssen*, O., Martin*, C. W., Worbs, T., Thielscher, A., Weise, K., & Knösche, T. R. (2025). Optimizing and assessing multichannel TMS focality. bioRxiv. doi: 10.1101/2025.09.19.677136

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynibs-0.2026.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pynibs-0.2026.1-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file pynibs-0.2026.1.tar.gz.

File metadata

  • Download URL: pynibs-0.2026.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for pynibs-0.2026.1.tar.gz
Algorithm Hash digest
SHA256 dd386a71ea75e0074d88e807450aa675ca737478967e85091c3603b3c7d3aeee
MD5 320cc2f57e470892b3dd2658f59491af
BLAKE2b-256 e70eedea6d6b19e2f8beb994d124db438b8920db3b07d5f66891ab3cb28a12d7

See more details on using hashes here.

File details

Details for the file pynibs-0.2026.1-py3-none-any.whl.

File metadata

  • Download URL: pynibs-0.2026.1-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for pynibs-0.2026.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5cedaddaa7a8ac297cdbc94d57eae44c66785ad5d3848e7d86152e94f1497bc1
MD5 96ea6460fd1169191a451cfd78bbe708
BLAKE2b-256 23c2f499cc8ce2016ec0d2e748f87e75c9320e4ea2b5f0e860b7733c0068fac4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page