image and video datasets and models for torch deep learning
Project description
torchvision
The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.
Installation
Please refer to the official
instructions to install the stable
versions of torch
and torchvision
on your system.
To build source, refer to our contributing page.
The following is the corresponding torchvision
versions and supported Python
versions.
torch |
torchvision |
Python |
---|---|---|
main / nightly |
main / nightly |
>=3.8 , <=3.12 |
2.3 |
0.18 |
>=3.8 , <=3.12 |
2.2 |
0.17 |
>=3.8 , <=3.11 |
2.1 |
0.16 |
>=3.8 , <=3.11 |
2.0 |
0.15 |
>=3.8 , <=3.11 |
older versions
torch |
torchvision |
Python |
---|---|---|
1.13 |
0.14 |
>=3.7.2 , <=3.10 |
1.12 |
0.13 |
>=3.7 , <=3.10 |
1.11 |
0.12 |
>=3.7 , <=3.10 |
1.10 |
0.11 |
>=3.6 , <=3.9 |
1.9 |
0.10 |
>=3.6 , <=3.9 |
1.8 |
0.9 |
>=3.6 , <=3.9 |
1.7 |
0.8 |
>=3.6 , <=3.9 |
1.6 |
0.7 |
>=3.6 , <=3.8 |
1.5 |
0.6 |
>=3.5 , <=3.8 |
1.4 |
0.5 |
==2.7 , >=3.5 , <=3.8 |
1.3 |
0.4.2 / 0.4.3 |
==2.7 , >=3.5 , <=3.7 |
1.2 |
0.4.1 |
==2.7 , >=3.5 , <=3.7 |
1.1 |
0.3 |
==2.7 , >=3.5 , <=3.7 |
<=1.0 |
0.2 |
==2.7 , >=3.5 , <=3.7 |
Image Backends
Torchvision currently supports the following image backends:
- torch tensors
- PIL images:
- Pillow
- Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD.
Read more in in our docs.
[UNSTABLE] Video Backend
Torchvision currently supports the following video backends:
- pyav (default) - Pythonic binding for ffmpeg libraries.
- video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install
Using the models on C++
Refer to example/cpp.
DISCLAIMER: the libtorchvision
library includes the torchvision
custom ops as well as most of the C++ torchvision APIs. Those APIs do not come
with any backward-compatibility guarantees and may change from one version to
the next. Only the Python APIs are stable and with backward-compatibility
guarantees. So, if you need stability within a C++ environment, your best bet is
to export the Python APIs via torchscript.
Documentation
You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html
Contributing
See the CONTRIBUTING file for how to help out.
Disclaimer on Datasets
This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.
If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
Pre-trained Model License
The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.
More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.
Citing TorchVision
If you find TorchVision useful in your work, please consider citing the following BibTeX entry:
@software{torchvision2016,
title = {TorchVision: PyTorch's Computer Vision library},
author = {TorchVision maintainers and contributors},
year = 2016,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/pytorch/vision}}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for torchvision-0.19.1-cp312-cp312-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4283d283675556bb0eae31d29996f53861b17cbdcdf3509e6bc050414ac9289 |
|
MD5 | 69817930eb355ad666e43b578dcc02cb |
|
BLAKE2b-256 | 6bb2fd577e1622b43cdeb74782a60cea4909f88f471813c215ea7b4e7ea84a74 |
Hashes for torchvision-0.19.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c07bf43c2a145d792ecd9d0503d6c73577147ece508d45600d8aac77e4cdfcf9 |
|
MD5 | 7ca4ea4779ad9b4f8d1cba512e9b7604 |
|
BLAKE2b-256 | dab29da42d67dfc30d9e3b161f7a37f6c7eca86a80e6caef4a9aa11727faa4f5 |
Hashes for torchvision-0.19.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c659ff92a61f188a1a7baef2850f3c0b6c85685447453c03d0e645ba8f1dcc1c |
|
MD5 | c7031d6ccb8d5c2cdec6c2f963b12179 |
|
BLAKE2b-256 | 8b34fdd2d9e01228a069b28473a7c020bf1812c8ecab8565666feb247659ed30 |
Hashes for torchvision-0.19.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27ece277ff0f6cdc7fed0627279c632dcb2e58187da771eca24b0fbcf3f8590d |
|
MD5 | 412ef956ff56117fb515b310b6c338c4 |
|
BLAKE2b-256 | a4d0b1029ab95d9219cac2dfc0d835e9ab4cebb01f5cb6b48e736778020fb995 |
Hashes for torchvision-0.19.1-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 70dea324174f5e9981b68e4b7cd524512c106ba64aedef560a86a0bbf2fbf62c |
|
MD5 | d12af03b8710b11728b4a7eddf983309 |
|
BLAKE2b-256 | f869dc769cf54df8e828c0b8957b4521f35178f5bd4cc5b8fbe8a37ffd89a27c |
Hashes for torchvision-0.19.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d71a6a6fe3a5281ca3487d4c56ad4aad20ff70f82f1d7c79bcb6e7b0c2af00c8 |
|
MD5 | 9dfe361dc687403d77fa70d2e4f33a17 |
|
BLAKE2b-256 | 360436e1d35b864f4a7c8f3056a427542b14b3bcdbc66edd36faadee109b86c5 |
Hashes for torchvision-0.19.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a91be061ae5d6d5b95e833b93e57ca4d3c56c5a57444dd15da2e3e7fba96050 |
|
MD5 | 8f842f8d34a8d8516894cc1b5945be8d |
|
BLAKE2b-256 | 289d40d1b943bbbd02a30d6b4f691d6de37a7e4c92f90bed0f8f47379e90eec6 |
Hashes for torchvision-0.19.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40514282b4896d62765b8e26d7091c32e17c35817d00ec4be2362ea3ba3d1787 |
|
MD5 | 2c7a8e3cfc5eea3d0a32700ff62db96a |
|
BLAKE2b-256 | 66f6a2f07a3f5385b37c45b8e14448b8610a8618dfad18ea437cb23b4edc50c5 |
Hashes for torchvision-0.19.1-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f40b6acabfa886da1bc3768f47679c61feee6bde90deb979d9f300df8c8a0145 |
|
MD5 | ca9640d6870d52a3961962e9b82d908f |
|
BLAKE2b-256 | f78ecbae11f8046d433881b478afc9e7589a76158124779cbc3a40163ec716bf |
Hashes for torchvision-0.19.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b063116164be52fc6deb4762de7f8c90bfa3a65f8d5caf17f8e2d5aadc75a04 |
|
MD5 | 742478a840c17250864fcbece0b670a0 |
|
BLAKE2b-256 | db71da0f71c2765feee125b1dc280a6432aa88c510aedf9a36987f3fe7ed05ea |
Hashes for torchvision-0.19.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20a1f5e02bfdad7714e55fa3fa698347c11d829fa65e11e5a84df07d93350eed |
|
MD5 | 3b4158a4645cf3e4cdd042aa1c19cdf8 |
|
BLAKE2b-256 | 7255e0b3821c5595a9a2c8ec98d234b4a0d1142d91daac61f007503d3158f857 |
Hashes for torchvision-0.19.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54e8513099e6f586356c70f809d34f391af71ad182fe071cc328a28af2c40608 |
|
MD5 | 5c1d912f23c20980e329062dcd6d45f7 |
|
BLAKE2b-256 | d490cab820b96d4d1a36b088774209d2379cf49eda8210c8fee13552383860b7 |
Hashes for torchvision-0.19.1-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6616f12e00a22e7f3fedbd0fccb0804c05e8fe22871668f10eae65cf3f283614 |
|
MD5 | 93d9b41a8e5f174ae7aa83cb0dbbc696 |
|
BLAKE2b-256 | b07b2e55c0c613af4df93ef5b9ab8f652226c07b3fb9b0c742ceedcdd6cec2e5 |
Hashes for torchvision-0.19.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e328309b8670a2e889b2fe76a1c2744a099c11c984da9a822357bd9debd699a5 |
|
MD5 | 5aca32318a0bd9d31b79918cda704739 |
|
BLAKE2b-256 | 6d1116d63ede75bd1433aa84f1d9156b058b3ed4976749972220a90c13a1df64 |
Hashes for torchvision-0.19.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | febe4f14d4afcb47cc861d8be7760ab6a123cd0817f97faf5771488cb6aa90f4 |
|
MD5 | a68f0a02aefe2825d6f0c5d67baa266e |
|
BLAKE2b-256 | c34f67b40e50d5dd1f9200421ab31b17d337162742b4f6676a0f4a917b3acdf1 |
Hashes for torchvision-0.19.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 731f434d91586769e255b5d70ed1a4457e0a1394a95f4aacf0e1e7e21f80c098 |
|
MD5 | e7a4175a46f4d33b6a38a72c9174947f |
|
BLAKE2b-256 | 61373aff3b9d89b8676f11702840fba7d7ef1d8e91d750426214cc55f6c3fee1 |
Hashes for torchvision-0.19.1-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ccf085ef1824fb9e16f1901285bf89c298c62dfd93267a39e8ee42c71255242f |
|
MD5 | a793ee85e86c8a7217be0b9814dcbaa2 |
|
BLAKE2b-256 | f64e17d3137e893e878d2c165268b3f80d59e306e1ac1e0d89d8cccb27cc1d76 |
Hashes for torchvision-0.19.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d10bc9083c4d5fadd7edd7b729700a7be48dab4f62278df3bc73fa48e48a155 |
|
MD5 | 57bd3929afd55aa0e84ff709bed983a7 |
|
BLAKE2b-256 | 9514b7dadde3ef929936e2139aa3f51f078887b6cc8bee702410979b929224e8 |
Hashes for torchvision-0.19.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9281d63ead929bb19143731154cd1d8bf0b5e9873dff8578a40e90a6bec3c6fa |
|
MD5 | 56acd549e9aa8122ef796875b9aca0f2 |
|
BLAKE2b-256 | ed1574800e103ea652bef9fc572661b74a081e2194700f0f5f4f184918218af6 |
Hashes for torchvision-0.19.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c4e4f5b24ea6b087b02ed492ab1e21bba3352c4577e2def14248cfc60732338 |
|
MD5 | 35dd3f6734114a9c690aebedd2635846 |
|
BLAKE2b-256 | 5a1a61529a059f89b36543f7749c31630a87f212cdefb8ca9a6dc718dd539efc |