Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

Please refer to the official instructions to install the stable versions of torch and torchvision on your system.

To build source, refer to our contributing page.

The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.9, <=3.12
2.5 0.20 >=3.9, <=3.12
2.4 0.19 >=3.8, <=3.12
2.3 0.18 >=3.8, <=3.12
2.2 0.17 >=3.8, <=3.11
2.1 0.16 >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
older versions
torch torchvision Python
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

Image Backends

Torchvision currently supports the following image backends:

  • torch tensors
  • PIL images:

Read more in in our docs.

[UNSTABLE] Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install

Using the models on C++

Refer to example/cpp.

DISCLAIMER: the libtorchvision library includes the torchvision custom ops as well as most of the C++ torchvision APIs. Those APIs do not come with any backward-compatibility guarantees and may change from one version to the next. Only the Python APIs are stable and with backward-compatibility guarantees. So, if you need stability within a C++ environment, your best bet is to export the Python APIs via torchscript.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.22.1-cp313-cp313t-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.13tWindows x86-64

torchvision-0.22.1-cp313-cp313t-manylinux_2_28_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ x86-64

torchvision-0.22.1-cp313-cp313t-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ ARM64

torchvision-0.22.1-cp313-cp313t-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

torchvision-0.22.1-cp313-cp313-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.13Windows x86-64

torchvision-0.22.1-cp313-cp313-manylinux_2_28_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

torchvision-0.22.1-cp313-cp313-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

torchvision-0.22.1-cp313-cp313-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

torchvision-0.22.1-cp312-cp312-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12Windows x86-64

torchvision-0.22.1-cp312-cp312-manylinux_2_28_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

torchvision-0.22.1-cp312-cp312-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

torchvision-0.22.1-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

torchvision-0.22.1-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11Windows x86-64

torchvision-0.22.1-cp311-cp311-manylinux_2_28_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

torchvision-0.22.1-cp311-cp311-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

torchvision-0.22.1-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

torchvision-0.22.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10Windows x86-64

torchvision-0.22.1-cp310-cp310-manylinux_2_28_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

torchvision-0.22.1-cp310-cp310-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

torchvision-0.22.1-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

torchvision-0.22.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9Windows x86-64

torchvision-0.22.1-cp39-cp39-manylinux_2_28_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

torchvision-0.22.1-cp39-cp39-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

torchvision-0.22.1-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file torchvision-0.22.1-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 7414eeacfb941fa21acddcd725f1617da5630ec822e498660a4b864d7d998075
MD5 7cd1aeea6afb8c9ccd7721e774e2a567
BLAKE2b-256 abc0131628e6d42682b0502c63fd7f647b8b5ca4bd94088f6c85ca7225db8ac4

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ef46e065502f7300ad6abc98554131c35dc4c837b978d91306658f1a65c00baa
MD5 f2001543a1e4252ea084f50f9d560093
BLAKE2b-256 948b04c6b15f8c29b39f0679589753091cec8b192ab296d4fdaf9055544c4ec9

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 27142bcc8a984227a6dcf560985e83f52b82a7d3f5fe9051af586a2ccc46ef26
MD5 9064a18b3b07f918900c450c29fa00ec
BLAKE2b-256 abc82ebe90f18e7ffa2120f5c3eab62aa86923185f78d2d051a455ea91461608

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 043d9e35ed69c2e586aff6eb9e2887382e7863707115668ac9d140da58f42cba
MD5 d5253ca83ab7eccaef5d431bfc47b080
BLAKE2b-256 0fcae9a06bd61ee8e04fb4962a3fb524fe6ee4051662db07840b702a9f339b24

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2566cafcfa47ecfdbeed04bab8cef1307c8d4ef75046f7624b9e55f384880dfe
MD5 7626099376a3975055f91962e47456b3
BLAKE2b-256 fd1d0ede596fedc2080d18108149921278b59f220fbb398f29619495337b0f86

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7ee682be589bb1a002b7704f06b8ec0b89e4b9068f48e79307d2c6e937a9fdf4
MD5 032627615a7a2845633010891d5a4e93
BLAKE2b-256 8db03cffd6a285b5ffee3fe4a31caff49e350c98c5963854474d1c4f7a51dea5

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4a614a6a408d2ed74208d0ea6c28a2fbb68290e9a7df206c5fef3f0b6865d307
MD5 ff58ac9f99bc4f54e5849aba0fb87e80
BLAKE2b-256 55f4b45f6cd92fa0acfac5e31b8e9258232f25bcdb0709a604e8b8a39d76e411

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c3ae3319624c43cc8127020f46c14aa878406781f0899bb6283ae474afeafbf
MD5 fcfb53d650961c5ac901997b90cf6208
BLAKE2b-256 7a30fecdd09fb973e963da68207fe9f3d03ec6f39a935516dc2a98397bf495c6

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 75e0897da7a8e43d78632f66f2bdc4f6e26da8d3f021a7c0fa83746073c2597b
MD5 d67ae54e7fc829738da3382bff38e7a3
BLAKE2b-256 0517e45d5cd3627efdb47587a0634179a3533593436219de3f20c743672d2a79

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 699c2d70d33951187f6ed910ea05720b9b4aaac1dcc1135f53162ce7d42481d3
MD5 69cf0720ac377a96f8656a40886800ce
BLAKE2b-256 178b155f99042f9319bd7759536779b2a5b67cbd4f89c380854670850f89a2f4

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 964414eef19459d55a10e886e2fca50677550e243586d1678f65e3f6f6bac47a
MD5 ece52cfb89355efaeb28e603c437d012
BLAKE2b-256 25f653e65384cdbbe732cc2106bb04f7fb908487e4fb02ae4a1613ce6904a122

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 153f1790e505bd6da123e21eee6e83e2e155df05c0fe7d56347303067d8543c5
MD5 eadb77a528e7d6386e23c0858d53b680
BLAKE2b-256 0290f4e99a5112dc221cf68a485e853cc3d9f3f1787cb950b895f3ea26d1ea98

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bb3f6df6f8fd415ce38ec4fd338376ad40c62e86052d7fc706a0dd51efac1718
MD5 1b9e8ef7cb823a6e966e8ffd8ed5877a
BLAKE2b-256 e5731b009b42fe4a7774ba19c23c26bb0f020d68525c417a348b166f1c56044f

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b7866a3b326413e67724ac46f1ee594996735e10521ba9e6cdbe0fa3cd98c2f2
MD5 43b01cb3311744a31431a196f5b5c2bd
BLAKE2b-256 c31a63eb241598b36d37a0221e10af357da34bd33402ccf5c0765e389642218a

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8b4a53a6067d63adba0c52f2b8dd2290db649d642021674ee43c0c922f0c6a69
MD5 662a4cb0f0b482a58ee00353c7e27c68
BLAKE2b-256 acd018f951b2be3cfe48c0027b349dcc6fde950e3dc95dd83e037e86f284f6fd

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4addf626e2b57fc22fd6d329cf1346d474497672e6af8383b7b5b636fba94a53
MD5 e05693c9f62f4aac7bacf0b2fdfa02e9
BLAKE2b-256 f600bdab236ef19da050290abc2b5203ff9945c84a1f2c7aab73e8e9c8c85669

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 86ad938f5a6ca645f0d5fb19484b1762492c2188c0ffb05c602e9e9945b7b371
MD5 c406ca1c741bdafb3281d59dbb652a49
BLAKE2b-256 32ff4a93a4623c3e5f97e8552af0f9f81d289dcf7f2ac71f1493f1c93a6b973d

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3347f690c2eed6d02aa0edfb9b01d321e7f7cf1051992d96d8d196c39b881d49
MD5 8e8ec883f9a125352214167a7aa77177
BLAKE2b-256 e299db71d62d12628111d59147095527a0ab492bdfecfba718d174c04ae6c505

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 990de4d657a41ed71680cd8be2e98ebcab55371f30993dc9bd2e676441f7180e
MD5 bc2db95480a83688dfa8461c1fd4641b
BLAKE2b-256 6c9fc4dcf1d232b75e28bc37e21209ab2458d6d60235e16163544ed693de54cb

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b47d8369ee568c067795c0da0b4078f39a9dfea6f3bc1f3ac87530dfda1dd56
MD5 99bdb83ab806aab76e877f44ffacfd97
BLAKE2b-256 152c7b67117b14c6cc84ae3126ca6981abfa3af2ac54eb5252b80d9475fb40df

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e01631046fda25a1eca2f58d5fdc9a152b93740eb82435cdb27c5151b8d20c02
MD5 9f0478c38252fc21e5eb27080971bfcd
BLAKE2b-256 2ebaaa10c0771588420a81fa1ea3666801856d1fb57abc186f16d64a7c86c105

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ef7dee376f42900c0e7b0e34624f391d9ece70ab90ee74b42de0c1fffe371284
MD5 091c98274ad079f90a961f82d71fdbc3
BLAKE2b-256 beb0ac3158206bff9e3ceadace60a753e4e21ce499daf0e6716184e9265a2855

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 154a2bdc37a16122c2024f2f77e65f5986020b40c013515c694b5d357fac99a1
MD5 e3ee1e43adcdd3a3b302a11808b1c8ff
BLAKE2b-256 bde92c13d5aba26be09bcbb799e54955b5526eb75f630957bc2c24133e9e350e

See more details on using hashes here.

File details

Details for the file torchvision-0.22.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8be941b4d35c0aba819be70fdbbbed8ceb60401ce6996b8cfaaba1300ce62263
MD5 b5605b52c5952f5f1416b6e1552d1086
BLAKE2b-256 1f91cfd4dfab7893acebb7cea9b60cf9624a0a107681249c68b1b41fb10b2286

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page