Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

https://travis-ci.org/pytorch/vision.svg?branch=master https://codecov.io/gh/pytorch/vision/branch/master/graph/badge.svg https://pepy.tech/badge/torchvision https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

TorchVision requires PyTorch 1.4 or newer.

Anaconda:

conda install torchvision -c pytorch

pip:

pip install torchvision

From source:

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It’s possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Image Backend

Torchvision currently supports the following image backends:

  • Pillow (default)

  • Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.

  • accimage - if installed can be activated by calling torchvision.set_image_backend('accimage')

C++ API

TorchVision also offers a C++ API that contains C++ equivalent of python models.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

Documentation

You can find the API documentation on the pytorch website: http://pytorch.org/docs/master/torchvision/

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.

If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.6.1-cp38-cp38-manylinux1_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8

torchvision-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl (436.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

torchvision-0.6.1-cp37-cp37m-manylinux1_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m

torchvision-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl (436.3 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

torchvision-0.6.1-cp36-cp36m-manylinux1_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.6m

torchvision-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl (436.3 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

torchvision-0.6.1-cp35-cp35m-manylinux1_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.5m

torchvision-0.6.1-cp35-cp35m-macosx_10_6_x86_64.whl (436.3 kB view details)

Uploaded CPython 3.5mmacOS 10.6+ x86-64

File details

Details for the file torchvision-0.6.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3af59c61d20bb0bb63dbd50f324fcd975fc5b89fb78e6b5714ae613cd7b734cc
MD5 f3f621d5dfed8aaefe7555e7830d406f
BLAKE2b-256 a6490c91252da378c3fc81ed0ca4391cdf507245864e0fad20ef4d4d703ec6bb

See more details on using hashes here.

File details

Details for the file torchvision-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 436.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80a8beaa3416035c9640d153b1f0a7c9b09aac8037a032bbc33fd4bc8657b091
MD5 e93db29038c852e7e0864ac54a1c1073
BLAKE2b-256 6556af4ebc639d329be6b0ea2fe928ca5b685bb3744e83fe347173b5cd1fce61

See more details on using hashes here.

File details

Details for the file torchvision-0.6.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 52be3710bf495fee9eb8f1cb4d310edd2da94b127b2ca0aa77075c1001bcbb91
MD5 bf10ea48700e94d956f33970a3949c7d
BLAKE2b-256 f4efc32275c040f12f24adcd6302f0f3cd12cc432e408ce4ea521600e8fd989c

See more details on using hashes here.

File details

Details for the file torchvision-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 436.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b07e7c5a7274082a8bbe88975c817da10bffaf4020017347d185b5d4eacb891d
MD5 a31d126e9cf7ecbb334072cbe6704c2c
BLAKE2b-256 713ddca8cab1605bb76bade94b20d1d95ec20e152ce319d55e0c9f8ae64c6a46

See more details on using hashes here.

File details

Details for the file torchvision-0.6.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c44819c3c903f2d6d269713a9aa81a9dcb0ab7716b4fc4dbdccf596e6fe894c9
MD5 8b32b3a6ce41be2f45f034e69c86136f
BLAKE2b-256 9af1535a407b4a265adf2dd7c2c2458217e37c5fe83ec97234e66c564592a9a0

See more details on using hashes here.

File details

Details for the file torchvision-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 436.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9a544f241e1df7485c1fda64f06af4962ad4af1da6caeda352757ea800dd794d
MD5 f3d11be45d927d6088178189748b39dc
BLAKE2b-256 0b8f9b72f3f485d2d5dfa3e19f001b2a0799cec210a1d54b29c211dd4f4851f6

See more details on using hashes here.

File details

Details for the file torchvision-0.6.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c122386a4604a6b611626d817981777bb06e747161a4954e4037c2e297fe1d86
MD5 741a0bd514313a06ccde748c2aeb47cd
BLAKE2b-256 d9727b094db5bc202e80a0e7120c654df88e43dcee6d388984da12271e9e7ff0

See more details on using hashes here.

File details

Details for the file torchvision-0.6.1-cp35-cp35m-macosx_10_6_x86_64.whl.

File metadata

  • Download URL: torchvision-0.6.1-cp35-cp35m-macosx_10_6_x86_64.whl
  • Upload date:
  • Size: 436.3 kB
  • Tags: CPython 3.5m, macOS 10.6+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0.post20200127 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for torchvision-0.6.1-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 eb6d7ef73ab8ed756d18c1c11ead3ba1be7b3e2fe5bf475e16a4426d7f3d6eec
MD5 4abbb62ec5562c94b863eb8024348991
BLAKE2b-256 7e4dc79dbdb322935b991dbac60aa4cb81a2ef65006a01e15ef89d6a4348e9cd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page