Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

https://pepy.tech/badge/torchvision https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

We recommend Anaconda as Python package management system. Please refer to pytorch.org for the detail of PyTorch (torch) installation. The following is the corresponding torchvision versions and supported Python versions.

torch

torchvision

python

main / nightly

main / nightly

>=3.7, <=3.10

1.11.0

0.12.0

>=3.7, <=3.10

1.10.2

0.11.3

>=3.6, <=3.9

1.10.1

0.11.2

>=3.6, <=3.9

1.10.0

0.11.1

>=3.6, <=3.9

1.9.1

0.10.1

>=3.6, <=3.9

1.9.0

0.10.0

>=3.6, <=3.9

1.8.2

0.9.2

>=3.6, <=3.9

1.8.1

0.9.1

>=3.6, <=3.9

1.8.0

0.9.0

>=3.6, <=3.9

1.7.1

0.8.2

>=3.6, <=3.9

1.7.0

0.8.1

>=3.6, <=3.8

1.7.0

0.8.0

>=3.6, <=3.8

1.6.0

0.7.0

>=3.6, <=3.8

1.5.1

0.6.1

>=3.5, <=3.8

1.5.0

0.6.0

>=3.5, <=3.8

1.4.0

0.5.0

==2.7, >=3.5, <=3.8

1.3.1

0.4.2

==2.7, >=3.5, <=3.7

1.3.0

0.4.1

==2.7, >=3.5, <=3.7

1.2.0

0.4.0

==2.7, >=3.5, <=3.7

1.1.0

0.3.0

==2.7, >=3.5, <=3.7

<=1.0.1

0.2.2

==2.7, >=3.5, <=3.7

Anaconda:

conda install torchvision -c pytorch

pip:

pip install torchvision

From source:

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

In case building TorchVision from source fails, install the nightly version of PyTorch following the linked guide on the contributing page and retry the install.

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It’s possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Image Backend

Torchvision currently supports the following image backends:

  • Pillow (default)

  • Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.

  • accimage - if installed can be activated by calling torchvision.set_image_backend('accimage')

  • libpng - can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions.

  • libjpeg - can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. libjpeg-turbo can be used as well.

Notes: libpng and libjpeg must be available at compilation time in order to be available. Make sure that it is available on the standard library locations, otherwise, add the include and library paths in the environment variables TORCHVISION_INCLUDE and TORCHVISION_LIBRARY, respectively.

Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.

  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn’t be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.

conda install -c conda-forge ffmpeg
python setup.py install

Using the models on C++

TorchVision provides an example project for how to use the models on C++ using JIT Script.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

Python linking is disabled by default when compiling TorchVision with CMake, this allows you to run models without any Python dependency. In some special cases where TorchVision’s operators are used from Python code, you may need to link to Python. This can be done by passing -DUSE_PYTHON=on to CMake.

TorchVision Operators

In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you #include <torchvision/vision.h> in your project.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.

If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.13.0-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10Windows x86-64

torchvision-0.13.0-cp310-cp310-manylinux2014_aarch64.whl (701.7 kB view details)

Uploaded CPython 3.10

torchvision-0.13.0-cp310-cp310-manylinux1_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.10

torchvision-0.13.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

torchvision-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

torchvision-0.13.0-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9Windows x86-64

torchvision-0.13.0-cp39-cp39-manylinux2014_aarch64.whl (701.7 kB view details)

Uploaded CPython 3.9

torchvision-0.13.0-cp39-cp39-manylinux1_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9

torchvision-0.13.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

torchvision-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

torchvision-0.13.0-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8Windows x86-64

torchvision-0.13.0-cp38-cp38-manylinux2014_aarch64.whl (701.7 kB view details)

Uploaded CPython 3.8

torchvision-0.13.0-cp38-cp38-manylinux1_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8

torchvision-0.13.0-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

torchvision-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

torchvision-0.13.0-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7mWindows x86-64

torchvision-0.13.0-cp37-cp37m-manylinux2014_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.7m

torchvision-0.13.0-cp37-cp37m-manylinux1_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.7m

torchvision-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file torchvision-0.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 01e9e7b2e7724e66561e8d98f900985d80191e977c5c0b3f33ed31800ba0210c
MD5 afb071a874f3172cd140d4c5debf60dd
BLAKE2b-256 2236986dc13e3d62d5928aeac07ffb3db3f751971bf401b6ae180f4744200ecf

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp310-cp310-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 701.7 kB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df16abf31e7a5fce8db1f781bf1e4f20c8bc730c7c3f657e946cc5820c04e465
MD5 d9647f9b38cb75a6ec3b9970ae85456e
BLAKE2b-256 37364ee343ddce8178b6a6d69d71937164a9fea0288aab0862091e270f80d6a4

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp310-cp310-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.1 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 acb72a40e5dc0cd454d28514dbdd589a5057afd9bb5c785b87a54718b999bfa1
MD5 9cb3636b261813fdb410617a43792d3f
BLAKE2b-256 4176bf1a99b7dc4f99cde9e19a7325aa2a09395fc11d74b9e171c6e105742938

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c4c35428c758adc485ff8f239b5ed68c1b6c26efa261a52e431cab0f7f22aec
MD5 16aa29d00635c0518f6a02e777db7b20
BLAKE2b-256 adcf9f0e98633463ae8e2f701dd288d50e342015462302b2137747e337c93a40

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61d5093a50b7923a4e5bf9e0271001c29e01abec2348b7dd93370a0a9d15836c
MD5 f0c32adf6e795b053cb89cb6255f2e1a
BLAKE2b-256 0a6f6fc7225073f15a895c06f73e947acc4ed1c83069b95da19b5452fea33d48

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b7a2c9aebc7ef265777fe7e82577364288d98cf6b8cf0a63bb2621df78a7af1a
MD5 f3a2cc082bf6fea022df325a481d8bf7
BLAKE2b-256 5ed0a1265a21c742225e19123389b8665439b7a22d734ff97ecdbbfaff33a3c5

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 701.7 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b620a43df4131ad09f5761c415a016a9ea95aaf8ec8c91d030fb59bad591094a
MD5 7cf85f24e437fd663365e085e1d4f0cc
BLAKE2b-256 3731a85ce4c9392a9ebe6b2b89b7600ea74114dad32720fab100a9d5f85c50d9

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.1 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0e28740bd5695076f7c449af650fc474d6566722d446461c2ceebf9c9599b37f
MD5 ceb8c45e4cd8b76607ced21038f1b421
BLAKE2b-256 fc4f28a9936c24938b7eece031f2fffe13b6e44d4a0c12fac4250bd0681705cd

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 253eb0c67bf88cef4a79ec69058c3e94f9fde28b9e3699ad1afc0b3ed50f8075
MD5 6f4e5f3b9889ab03bfd30798ebdd862d
BLAKE2b-256 230bbfedfac311ae8e1547eeac83bd4ee3d5b9ed32387d06d7417a769ce47e05

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2278a189663087bb8e65915062aa7a25b8f8e5a3cfaa5879fe277e23e4bbf40
MD5 f9e50709ce522dc1aac56942a440cd4f
BLAKE2b-256 cab4acb0e60eacecefe92c8cbeb842a7dcb5a35dcf56290c6b73a9a594b33e24

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1e2049f1207631d42d743205f663f1d2235796565be3f18b0339d479626faf30
MD5 03d4f9ab9234b4988767f135842efffe
BLAKE2b-256 51337b204b265786738c42f7c3521b4787505fc36bb9ba03c34bb1a9f12c076d

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 701.7 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 667cac55afb13cda7d362466e7eba3119e529b210e55507d231bead09aca5e1f
MD5 312a0648c826d5fe74456753a4907f56
BLAKE2b-256 5a39e5bfcc13582b520e1e4b97a912bf87b4d55bca9bfb6b48cb495f5ba5c5f3

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1b703701f0b99f307ad925b1abda2b3d5bdbf30643ff02102b6aeeb8840ae278
MD5 f415acc9648e8cc53c9a6f8220547ef6
BLAKE2b-256 182caa3f3193ea406aac402d9fcd30b07246cac096cf8e62d31d43c209b4adfd

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 42d95ab197d090efc5669fec02fbc603d05c859e50ca2c60180d1a113aa9b3e2
MD5 394aa4084d2913a28cac4e8bfff753b3
BLAKE2b-256 ed24dd88eb2fceea339aa7eff53d3bfc2b59e58aa21a8eaa94c8d812ae707189

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 83a4d9d50787d1e886c94486b63b15978391f6cf1892fce6a93132c09b14e128
MD5 764158d2ac9f723f214fd879d291da04
BLAKE2b-256 a1184fc8b2b2f1a98f04c0c6cfd46755cdaecb6668b15e77d5a0f464433fc6ce

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ad458146aca15f652f9b0c227bebd5403602c7341f15f68f20ec119fa8e8f4a5
MD5 b8c191f163b99a39499133da410f7747
BLAKE2b-256 d562ecd1fca8be767f5386433ac65c1c8b4a36cf59622e638d157039e38fa5c8

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ada295dbfe55017b02acfab960a997387f5addbadd28ee5e575e24f692992ce4
MD5 93c32912a744ef4282a06e06a3e6f94e
BLAKE2b-256 42845e8a209e8b4ac4ea05a05308625995ce353600abe26f666410e2006fafcc

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a20662c11dc14fd4eff102ceb946a7ee80b9f98303bb52435cc903f2c4c1fe10
MD5 1c4023bd3beb8cba52cd7ca2de5eaed2
BLAKE2b-256 fe68d60b9e06f7970e6667df025d2a0e118d240f8f6efa2ca8e391739a7f076a

See more details on using hashes here.

File details

Details for the file torchvision-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c31e9b3004142dbfdf32adc4cf2d4fd709b820833e9786f839ae3a91ff65ef0
MD5 ba4da4376753e4ac3bdd5d10fd179c8d
BLAKE2b-256 b573e05265fa25badefdeb538f21951c2f224a287a70885b26f9a06cb9c47c73

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page