Skip to main content

Forecasting utilities

Project description

utilsforecast

Install

PyPI

pip install utilsforecast

Conda

conda install -c conda-forge utilsforecast

How to use

Generate synthetic data

from utilsforecast.data import generate_series
series = generate_series(3, with_trend=True, static_as_categorical=False)
series
unique_id ds y
0 0 2000-01-01 0.422133
1 0 2000-01-02 1.501407
2 0 2000-01-03 2.568495
3 0 2000-01-04 3.529085
4 0 2000-01-05 4.481929
... ... ... ...
481 2 2000-06-11 163.914625
482 2 2000-06-12 166.018479
483 2 2000-06-13 160.839176
484 2 2000-06-14 162.679603
485 2 2000-06-15 165.089288

486 rows × 3 columns

Plotting

from utilsforecast.plotting import plot_series
fig = plot_series(series, plot_random=False, max_insample_length=50, engine='matplotlib')
fig.savefig('imgs/index.png', bbox_inches='tight')

Preprocessing

from utilsforecast.preprocessing import fill_gaps
serie = series[series['unique_id'].eq(0)].tail(10)
# drop some points
with_gaps = serie.sample(frac=0.5, random_state=0).sort_values('ds')
with_gaps
unique_id ds y
213 0 2000-08-01 18.543147
214 0 2000-08-02 19.941764
216 0 2000-08-04 21.968733
220 0 2000-08-08 19.091509
221 0 2000-08-09 20.220739
fill_gaps(with_gaps, freq='D')
unique_id ds y
0 0 2000-08-01 18.543147
1 0 2000-08-02 19.941764
2 0 2000-08-03 NaN
3 0 2000-08-04 21.968733
4 0 2000-08-05 NaN
5 0 2000-08-06 NaN
6 0 2000-08-07 NaN
7 0 2000-08-08 19.091509
8 0 2000-08-09 20.220739

Evaluating

from functools import partial

import numpy as np

from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mape, mase
valid = series.groupby('unique_id').tail(7).copy()
train = series.drop(valid.index)
rng = np.random.RandomState(0)
valid['seas_naive'] = train.groupby('unique_id')['y'].tail(7).values
valid['rand_model'] = valid['y'] * rng.rand(valid['y'].shape[0])
daily_mase = partial(mase, seasonality=7)
evaluate(valid, metrics=[mape, daily_mase], train_df=train)
unique_id metric seas_naive rand_model
0 0 mape 0.024139 0.440173
1 1 mape 0.054259 0.278123
2 2 mape 0.042642 0.480316
3 0 mase 0.907149 16.418014
4 1 mase 0.991635 6.404254
5 2 mase 1.013596 11.365040

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

utilsforecast-0.0.21.tar.gz (35.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

utilsforecast-0.0.21-py3-none-any.whl (35.9 kB view details)

Uploaded Python 3

File details

Details for the file utilsforecast-0.0.21.tar.gz.

File metadata

  • Download URL: utilsforecast-0.0.21.tar.gz
  • Upload date:
  • Size: 35.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for utilsforecast-0.0.21.tar.gz
Algorithm Hash digest
SHA256 3a67430243370de78dcb219a4d22000d2e5957c23d5d5f4193d865e7ef3d422a
MD5 44cc674a05158b66160b228f6eab3dde
BLAKE2b-256 7ce8b220a725338164fe1b9600b43802a0d53bb9c46a5f263132202f4e51f8a8

See more details on using hashes here.

File details

Details for the file utilsforecast-0.0.21-py3-none-any.whl.

File metadata

  • Download URL: utilsforecast-0.0.21-py3-none-any.whl
  • Upload date:
  • Size: 35.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for utilsforecast-0.0.21-py3-none-any.whl
Algorithm Hash digest
SHA256 09aaea97d42361b934b1211252ca38d8374e3061fb2d92761d1e20a44c04b33d
MD5 c287ae5bd28143e35940bdf485c5c8c8
BLAKE2b-256 20496b3bbd4a24b0cb8e31be3afdbd3dbf17a41cfafec7d3d2b96462d6fa46e9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page