Skip to main content

Forecasting utilities

Project description

utilsforecast

Install

PyPI

pip install utilsforecast

Conda

conda install -c conda-forge utilsforecast

How to use

Generate synthetic data

from utilsforecast.data import generate_series
series = generate_series(3, with_trend=True, static_as_categorical=False)
series
unique_id ds y
0 0 2000-01-01 0.422133
1 0 2000-01-02 1.501407
2 0 2000-01-03 2.568495
3 0 2000-01-04 3.529085
4 0 2000-01-05 4.481929
... ... ... ...
481 2 2000-06-11 163.914625
482 2 2000-06-12 166.018479
483 2 2000-06-13 160.839176
484 2 2000-06-14 162.679603
485 2 2000-06-15 165.089288

486 rows × 3 columns

Plotting

from utilsforecast.plotting import plot_series
fig = plot_series(series, plot_random=False, max_insample_length=50, engine='matplotlib')
fig.savefig('imgs/index.png', bbox_inches='tight')

Preprocessing

from utilsforecast.preprocessing import fill_gaps
serie = series[series['unique_id'].eq(0)].tail(10)
# drop some points
with_gaps = serie.sample(frac=0.5, random_state=0).sort_values('ds')
with_gaps
unique_id ds y
213 0 2000-08-01 18.543147
214 0 2000-08-02 19.941764
216 0 2000-08-04 21.968733
220 0 2000-08-08 19.091509
221 0 2000-08-09 20.220739
fill_gaps(with_gaps, freq='D')
unique_id ds y
0 0 2000-08-01 18.543147
1 0 2000-08-02 19.941764
2 0 2000-08-03 NaN
3 0 2000-08-04 21.968733
4 0 2000-08-05 NaN
5 0 2000-08-06 NaN
6 0 2000-08-07 NaN
7 0 2000-08-08 19.091509
8 0 2000-08-09 20.220739

Evaluating

from functools import partial

import numpy as np

from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mape, mase
valid = series.groupby('unique_id').tail(7).copy()
train = series.drop(valid.index)
rng = np.random.RandomState(0)
valid['seas_naive'] = train.groupby('unique_id')['y'].tail(7).values
valid['rand_model'] = valid['y'] * rng.rand(valid['y'].shape[0])
daily_mase = partial(mase, seasonality=7)
evaluate(valid, metrics=[mape, daily_mase], train_df=train)
unique_id metric seas_naive rand_model
0 0 mape 0.024139 0.440173
1 1 mape 0.054259 0.278123
2 2 mape 0.042642 0.480316
3 0 mase 0.907149 16.418014
4 1 mase 0.991635 6.404254
5 2 mase 1.013596 11.365040

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

utilsforecast-0.0.5.tar.gz (24.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

utilsforecast-0.0.5-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file utilsforecast-0.0.5.tar.gz.

File metadata

  • Download URL: utilsforecast-0.0.5.tar.gz
  • Upload date:
  • Size: 24.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for utilsforecast-0.0.5.tar.gz
Algorithm Hash digest
SHA256 c821e8c617e28e3644ae229c82b68bd9ab5cacb672541d11ebf16c5919567f7e
MD5 910e7116864b9382a38582729cdb6102
BLAKE2b-256 190f598ec97039f57b2e72a873eea1b8cf5e582bde4c80109b3d4abbd8bac1e1

See more details on using hashes here.

File details

Details for the file utilsforecast-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: utilsforecast-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for utilsforecast-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 c5a0493d38c7980184adc3669fcade29d511f7e67db211c6e2d030c98d0257fa
MD5 c8fc26ba3d3c41c97a66b6be9ca60bea
BLAKE2b-256 8ddf9df66078361ce202dcbddfb482bca0ab700cb1ada153c0dd8e4d4f776b1c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page