Skip to main content

Forecasting utilities

Project description

utilsforecast

Install

pip install utilsforecast

How to use

Generate synthetic data

from utilsforecast.data import generate_series
series = generate_series(3, with_trend=True, static_as_categorical=False)
series
unique_id ds y
0 0 2000-01-01 0.422133
1 0 2000-01-02 1.501407
2 0 2000-01-03 2.568495
3 0 2000-01-04 3.529085
4 0 2000-01-05 4.481929
... ... ... ...
481 2 2000-06-11 163.914625
482 2 2000-06-12 166.018479
483 2 2000-06-13 160.839176
484 2 2000-06-14 162.679603
485 2 2000-06-15 165.089288

486 rows × 3 columns

Plotting

from utilsforecast.plotting import plot_series
fig = plot_series(series, plot_random=False, max_insample_length=50, engine='matplotlib')
fig.savefig('imgs/index.png', bbox_inches='tight')

Preprocessing

from utilsforecast.preprocessing import fill_gaps
serie = series[series['unique_id'].eq(0)].tail(10)
# drop some points
with_gaps = serie.sample(frac=0.5, random_state=0).sort_values('ds')
with_gaps
unique_id ds y
213 0 2000-08-01 18.543147
214 0 2000-08-02 19.941764
216 0 2000-08-04 21.968733
220 0 2000-08-08 19.091509
221 0 2000-08-09 20.220739
fill_gaps(with_gaps, freq='D')
unique_id ds y
0 0 2000-08-01 18.543147
1 0 2000-08-02 19.941764
2 0 2000-08-03 NaN
3 0 2000-08-04 21.968733
4 0 2000-08-05 NaN
5 0 2000-08-06 NaN
6 0 2000-08-07 NaN
7 0 2000-08-08 19.091509
8 0 2000-08-09 20.220739

Evaluating

from functools import partial

import numpy as np

from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mape, mase
valid = series.groupby('unique_id').tail(7).copy()
train = series.drop(valid.index)
rng = np.random.RandomState(0)
valid['seas_naive'] = train.groupby('unique_id')['y'].tail(7).values
valid['rand_model'] = valid['y'] * rng.rand(valid['y'].shape[0])
daily_mase = partial(mase, seasonality=7)
evaluate(valid, metrics=[mape, daily_mase], train_df=train)
unique_id metric seas_naive rand_model
0 0 mape 0.024139 0.440173
1 1 mape 0.054259 0.278123
2 2 mape 0.042642 0.480316
0 0 mase 0.907149 16.418014
1 1 mase 0.991635 6.404254
2 2 mase 1.013596 11.365040

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

utilsforecast-0.0.3.tar.gz (23.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

utilsforecast-0.0.3-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file utilsforecast-0.0.3.tar.gz.

File metadata

  • Download URL: utilsforecast-0.0.3.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for utilsforecast-0.0.3.tar.gz
Algorithm Hash digest
SHA256 23da5554fc3bf93163a15c2467b68d6f0d8e2139acf42ebd3affff431da6e08d
MD5 8823040e19b497641716c1b645df0e26
BLAKE2b-256 132d2c39f341e010983a393895204e96ac26aabb80a94380ebc4c03c6b33079d

See more details on using hashes here.

File details

Details for the file utilsforecast-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: utilsforecast-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 25.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for utilsforecast-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c276bdc9f2d663125aac031e05287883e4f0ed836b0d89ceb761fd054fd7cd39
MD5 b89bad84268df24cabf62f0515914048
BLAKE2b-256 d1c9425037614b922f739ad433161eeea904071cd1b81b8fb024c0c2920fd5a4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page