Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

Please refer to the official instructions to install the stable versions of torch and torchvision on your system.

To build source, refer to our contributing page.

The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.9, <=3.12
2.5 0.20 >=3.9, <=3.12
2.4 0.19 >=3.8, <=3.12
2.3 0.18 >=3.8, <=3.12
2.2 0.17 >=3.8, <=3.11
2.1 0.16 >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
older versions
torch torchvision Python
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

Image Backends

Torchvision currently supports the following image backends:

  • torch tensors
  • PIL images:

Read more in in our docs.

[UNSTABLE] Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install

Using the models on C++

Refer to example/cpp.

DISCLAIMER: the libtorchvision library includes the torchvision custom ops as well as most of the C++ torchvision APIs. Those APIs do not come with any backward-compatibility guarantees and may change from one version to the next. Only the Python APIs are stable and with backward-compatibility guarantees. So, if you need stability within a C++ environment, your best bet is to export the Python APIs via torchscript.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.22.0-cp313-cp313t-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.13t Windows x86-64

torchvision-0.22.0-cp313-cp313t-manylinux_2_28_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ x86-64

torchvision-0.22.0-cp313-cp313t-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ ARM64

torchvision-0.22.0-cp313-cp313t-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

torchvision-0.22.0-cp313-cp313-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.13 Windows x86-64

torchvision-0.22.0-cp313-cp313-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

torchvision-0.22.0-cp313-cp313-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

torchvision-0.22.0-cp313-cp313-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

torchvision-0.22.0-cp312-cp312-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchvision-0.22.0-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

torchvision-0.22.0-cp312-cp312-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

torchvision-0.22.0-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchvision-0.22.0-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchvision-0.22.0-cp311-cp311-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

torchvision-0.22.0-cp311-cp311-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

torchvision-0.22.0-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchvision-0.22.0-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchvision-0.22.0-cp310-cp310-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

torchvision-0.22.0-cp310-cp310-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

torchvision-0.22.0-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchvision-0.22.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.22.0-cp39-cp39-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

torchvision-0.22.0-cp39-cp39-manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

torchvision-0.22.0-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file torchvision-0.22.0-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 e5d680162694fac4c8a374954e261ddfb4eb0ce103287b0f693e4e9c579ef957
MD5 f7a93aa27fa29990357dca9712513d60
BLAKE2b-256 c17b30d423bdb2546250d719d7821aaf9058cc093d165565b245b159c788a9dd

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b30e3ed29e4a61f7499bca50f57d8ebd23dfc52b14608efa17a534a55ee59a03
MD5 4497118c3557c237016352214d3ef1e9
BLAKE2b-256 7d40a7bc2ab9b1e56d10a7fd9ae83191bb425fa308caa23d148f1c568006e02c

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 753d3c84eeadd5979a33b3b73a25ecd0aa4af44d6b45ed2c70d44f5e0ac68312
MD5 7941750ecd26695c608ba1addbae4b27
BLAKE2b-256 6a9a2b59f5758ba7e3f23bc84e16947493bbce97392ec6d18efba7bdf0a3b10e

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cdc96daa4658b47ce9384154c86ed1e70cba9d972a19f5de6e33f8f94a626790
MD5 4a0883968535c4eea4531cbb849dbfd5
BLAKE2b-256 6fa7f43e9c8d13118b4ffbaebea664c9338ab20fa115a908125afd2238ff16e7

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 4ada1c08b2f761443cd65b7c7b4aec9e2fc28f75b0d4e1b1ebc9d3953ebccc4d
MD5 9165ef7ddb6e8b1ba687a314eff0cef4
BLAKE2b-256 5819ca7a4f8907a56351dfe6ae0a708f4e6b3569b5c61d282e3e7f61cf42a4ce

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2b839ac0610a38f56bef115ee5b9eaca5f9c2da3c3569a68cc62dbcc179c157f
MD5 0bba2d5fa6eee9e4565aa31dd988e47a
BLAKE2b-256 f7822f813eaae7c1fae1f9d9e7829578f5a91f39ef48d6c1c588a8900533dd3d

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 471c6dd75bb984c6ebe4f60322894a290bf3d4b195e769d80754f3689cd7f238
MD5 f58946ce4033e1dc013022649f314e59
BLAKE2b-256 777788f64879483d66daf84f1d1c4d5c31ebb08e640411139042a258d5f7dbfe

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ece17995857dd328485c9c027c0b20ffc52db232e30c84ff6c95ab77201112c5
MD5 2164262067ca7934515058c4a824ab9f
BLAKE2b-256 e12a9b34685599dcb341d12fc2730055155623db7a619d2415a8d31f17050952

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 24b8c9255c209ca419cc7174906da2791c8b557b75c23496663ec7d73b55bebf
MD5 c4c13acfdc168a9bd03bd169264312e5
BLAKE2b-256 9994a015e93955f5d3a68689cc7c385a3cfcd2d62b84655d18b61f32fb04eb67

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ce4dc334ebd508de2c534817c9388e928bc2500cf981906ae8d6e2ca3bf4727a
MD5 72ad73980611021b25df5eb6a3095df8
BLAKE2b-256 7c485f7617f6c60d135f86277c53f9d5682dfa4e66f4697f505f1530e8b69fb1

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8f116bc82e0c076e70ba7776e611ed392b9666aa443662e687808b08993d26af
MD5 828270c5162d669c55e76c5bf99238bc
BLAKE2b-256 72ef21f8b6122e13ae045b8e49658029c695fd774cd21083b3fa5c3f9c5d3e35

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31c3165418fe21c3d81fe3459e51077c2f948801b8933ed18169f54652796a0f
MD5 dda7d219dff05f0c58bf9597b4355973
BLAKE2b-256 cbea887d1d61cf4431a46280972de665f350af1898ce5006cd046326e5d0a2f2

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e4017b5685dbab4250df58084f07d95e677b2f3ed6c2e507a1afb8eb23b580ca
MD5 57976b667d135f96bab65db353a6426d
BLAKE2b-256 e4cf8f9305cc0ea26badbbb3558ecae54c04a245429f03168f7fad502f8a5b25

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ce292701c77c64dd3935e3e31c722c3b8b176a75f76dc09b804342efc1db5494
MD5 06aef6660e41b65c8a52ac1fccb3b673
BLAKE2b-256 09426908bff012a1dcc4fc515e52339652d7f488e208986542765c02ea775c2f

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6c5620e10ffe388eb6f4744962106ed7cf1508d26e6fdfa0c10522d3249aea24
MD5 d929a4761beb302cc2da26e546097d2c
BLAKE2b-256 7e71ce9a303b94e64fe25d534593522ffc76848c4e64c11e4cbe9f6b8d537210

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 191ea28321fc262d8aa1a7fe79c41ff2848864bf382f9f6ea45c41dde8313792
MD5 9d79b3aa66bd70eba8b9d85d448cfe55
BLAKE2b-256 b14328bc858b022f6337326d75f4027d2073aad5432328f01ee1236d847f1b82

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8c869df2e8e00f7b1d80a34439e6d4609b50fe3141032f50b38341ec2b59404e
MD5 e3e83e53f6bab4c0294144d0eb16e766
BLAKE2b-256 c7ec2cdb90c6d9d61410b3df9ca67c210b60bf9b07aac31f800380b20b90386c

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6fbca169c690fa2b9b8c39c0ad76d5b8992296d0d03df01e11df97ce12b4e0ac
MD5 0ac0134d5b71b37865526107a8f9c336
BLAKE2b-256 e79ee898a377e674da47e95227f3d7be2c49550ce381eebd8c7831c1f8bb7d39

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 810ea4af3bc63cf39e834f91f4218ff5999271caaffe2456247df905002bd6c0
MD5 9ce25fb46d80d452886ade2e2f330c61
BLAKE2b-256 a3e5ec4b52041cd8c440521b75864376605756bd2d112d6351ea6a1ab25008c1

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72256f1d7ff510b16c9fb4dd488584d0693f40c792f286a9620674438a81ccca
MD5 fe3a7b26be8648d55cf18294323953d5
BLAKE2b-256 eb03a514766f068b088180f273913e539d08e830be3ae46ef8577ea62584a27c

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3548d594ed7d0b7bc59486d642e2dd437f37910e52ab67e5f01567f12ed767dc
MD5 de8dfdcf03e738603b6ce00d1cd80011
BLAKE2b-256 04a69ac4d1780d7ffac2d7067e05904437c44a27ab8ca75a7b1a163d9d32bf46

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0dc9b97fea14e7a8d047d0d21d8bfde6afd655c41a9a86207c9d3a7605319fcd
MD5 1b909f0804e5efb7d39eae45a2134439
BLAKE2b-256 8982a3e39390ac1b3a15d1322b81059216adca5148e54bd071823b9af40f1d39

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4095fac2b2e49a9c30f701e09ec1bdf3d11b1e48b006a76a9015a2ed8b39556e
MD5 198885aac46b96dbc47fc282f3b576c0
BLAKE2b-256 2c40ca84add0f8e548a5b083b271e832786cd397047a9c2e7fac76c0c1f3de04

See more details on using hashes here.

File details

Details for the file torchvision-0.22.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.22.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ef38a397f1b9cf62846fb20659cb99101f9d361de8c45d79284ee45c6f40d50
MD5 94d1bfb22af56d171db5c0b91e11d9ef
BLAKE2b-256 3a6eeb662050a22a75a85b3b5e5f33dddfdc487c10ffcd20b82a8c2a4a6cd56c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page