Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

Please refer to the official instructions to install the stable versions of torch and torchvision on your system.

To build source, refer to our contributing page.

The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.9, <=3.12
2.5 0.20 >=3.9, <=3.12
2.4 0.19 >=3.8, <=3.12
2.3 0.18 >=3.8, <=3.12
2.2 0.17 >=3.8, <=3.11
2.1 0.16 >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
older versions
torch torchvision Python
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

Image Backends

Torchvision currently supports the following image backends:

  • torch tensors
  • PIL images:

Read more in in our docs.

[UNSTABLE] Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install

Using the models on C++

Refer to example/cpp.

DISCLAIMER: the libtorchvision library includes the torchvision custom ops as well as most of the C++ torchvision APIs. Those APIs do not come with any backward-compatibility guarantees and may change from one version to the next. Only the Python APIs are stable and with backward-compatibility guarantees. So, if you need stability within a C++ environment, your best bet is to export the Python APIs via torchscript.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.23.0-cp313-cp313t-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.13tWindows x86-64

torchvision-0.23.0-cp313-cp313t-manylinux_2_28_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ x86-64

torchvision-0.23.0-cp313-cp313t-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ ARM64

torchvision-0.23.0-cp313-cp313t-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

torchvision-0.23.0-cp313-cp313-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.13Windows x86-64

torchvision-0.23.0-cp313-cp313-manylinux_2_28_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

torchvision-0.23.0-cp313-cp313-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

torchvision-0.23.0-cp313-cp313-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

torchvision-0.23.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12Windows x86-64

torchvision-0.23.0-cp312-cp312-manylinux_2_28_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

torchvision-0.23.0-cp312-cp312-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

torchvision-0.23.0-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

torchvision-0.23.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11Windows x86-64

torchvision-0.23.0-cp311-cp311-manylinux_2_28_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

torchvision-0.23.0-cp311-cp311-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

torchvision-0.23.0-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

torchvision-0.23.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10Windows x86-64

torchvision-0.23.0-cp310-cp310-manylinux_2_28_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

torchvision-0.23.0-cp310-cp310-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

torchvision-0.23.0-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

torchvision-0.23.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9Windows x86-64

torchvision-0.23.0-cp39-cp39-manylinux_2_28_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

torchvision-0.23.0-cp39-cp39-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

torchvision-0.23.0-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file torchvision-0.23.0-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 b9e2dabf0da9c8aa9ea241afb63a8f3e98489e706b22ac3f30416a1be377153b
MD5 93b66a8f0126218a3b952a9510f44748
BLAKE2b-256 6ef5b5a2d841a8d228b5dbda6d524704408e19e7ca6b7bb0f24490e081da1fa1

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 76bc4c0b63d5114aa81281390f8472a12a6a35ce9906e67ea6044e5af4cab60c
MD5 c6688eca63bb2817d8f8f7f0871dfe2e
BLAKE2b-256 2bf434662f71a70fa1e59de99772142f22257ca750de05ccb400b8d2e3809c1d

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2a3299d2b1d5a7aed2d3b6ffb69c672ca8830671967eb1cee1497bacd82fe47b
MD5 7d2ada2ef4bb11ebcb232baf5289633d
BLAKE2b-256 1d9d406cea60a9eb9882145bcd62a184ee61e823e8e1d550cdc3c3ea866a9445

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2df618e1143805a7673aaf82cb5720dd9112d4e771983156aaf2ffff692eebf9
MD5 dc6cd3bef12621daee31a40498f9e985
BLAKE2b-256 053572f91ad9ac7c19a849dedf083d347dc1123f0adeb401f53974f84f1d04c8

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 07d069cb29691ff566e3b7f11f20d91044f079e1dbdc9d72e0655899a9b06938
MD5 b81b8e8a47dd43fb19e626cc9e2829f9
BLAKE2b-256 1fe4028a27b60aa578a2fa99d9d7334ff1871bb17008693ea055a2fdee96da0d

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a76fafe113b2977be3a21bf78f115438c1f88631d7a87203acb3dd6ae55889e6
MD5 4c3c748744ce15e8810597f211ff85f6
BLAKE2b-256 a0275ce65ba5c9d3b7d2ccdd79892ab86a2f87ac2ca6638f04bb0280321f1a9c

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2f7fd6c15f3697e80627b77934f77705f3bc0e98278b989b2655de01f6903e1d
MD5 63fd9554e7193640e8603939f48e85a5
BLAKE2b-256 acdaa06c60fc84fc849377cf035d3b3e9a1c896d52dbad493b963c0f1cdd74d0

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c37e325e09a184b730c3ef51424f383ec5745378dc0eca244520aca29722600
MD5 2300faa074e9500a92843ab790bcd568
BLAKE2b-256 913745a5b9407a7900f71d61b2b2f62db4b7c632debca397f205fdcacb502780

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a2e45272abe7b8bf0d06c405e78521b5757be1bd0ed7e5cd78120f7fdd4cbf35
MD5 7835c9ad91d2a3299699c635c5313ec7
BLAKE2b-256 82c1c2fe6d61e110a8d0de2f94276899a2324a8f1e6aee559eb6b4629ab27466

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4e7d31c43bc7cbecbb1a5652ac0106b436aa66e26437585fc2c4b2cf04d6014c
MD5 4fc4152b119973442bf3ec19908834e1
BLAKE2b-256 e4b53e580dcbc16f39a324f3dd71b90edbf02a42548ad44d2b4893cc92b1194b

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6dd7c4d329a0e03157803031bc856220c6155ef08c26d4f5bbac938acecf0948
MD5 eae3135778a7e639a421114740ead67c
BLAKE2b-256 e2002f6454decc0cd67158c7890364e446aad4b91797087a57a78e72e1a8f8bc

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0e2c04a91403e8dd3af9756c6a024a1d9c0ed9c0d592a8314ded8f4fe30d440
MD5 4072e16d38e87bea5bb92fa4dbabb04e
BLAKE2b-256 df1d0ea0b34bde92a86d42620f29baa6dcbb5c2fc85990316df5cb8f7abb8ea2

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 09bfde260e7963a15b80c9e442faa9f021c7e7f877ac0a36ca6561b367185013
MD5 a95cffdc47f9ca0674dca8415d440a14
BLAKE2b-256 93403415d890eb357b25a8e0a215d32365a88ecc75a283f75c4e919024b22d97

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 35c27941831b653f5101edfe62c03d196c13f32139310519e8228f35eae0e96a
MD5 090c693000b824aa3610518dcf31e16f
BLAKE2b-256 799cfcb09aff941c8147d9e6aa6c8f67412a05622b0c750bcf796be4c85a58d4

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 01dc33ee24c79148aee7cdbcf34ae8a3c9da1674a591e781577b716d233b1fa6
MD5 9fdad06eb4a042e9ab2f5262c5f91e7c
BLAKE2b-256 dd147b44fe766b7d11e064c539d92a172fa9689a53b69029e24f2f1f51e7dc56

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49aa20e21f0c2bd458c71d7b449776cbd5f16693dd5807195a820612b8a229b7
MD5 949f06720e190f475de9c710bd458ff7
BLAKE2b-256 f0d715d3d7bd8d0239211b21673d1bac7bc345a4ad904a8e25bb3fd8a9cf1fbc

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 83ee5bf827d61a8af14620c0a61d8608558638ac9c3bac8adb7b27138e2147d1
MD5 f207d80aaf1bc6c1d4f28b0892f9d9c1
BLAKE2b-256 979002afe57c3ef4284c5cf89d3b7ae203829b3a981f72b93a7dd2a3fd2c83c1

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3932bf67256f2d095ce90a9f826f6033694c818856f4bb26794cf2ce64253e53
MD5 12932503696ccebaa3c128049023d853
BLAKE2b-256 93f33cdf55bbf0f737304d997561c34ab0176222e0496b6743b0feab5995182c

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 31c583ba27426a3a04eca8c05450524105c1564db41be6632f7536ef405a6de2
MD5 d3227889d195a0f2666fa1fc81c6baf6
BLAKE2b-256 2544ddd56d1637bac42a8c5da2c8c440d8a28c431f996dd9790f32dd9a96ca6e

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7266871daca00ad46d1c073e55d972179d12a58fa5c9adec9a3db9bbed71284a
MD5 ef09ecab170864d49c79f97aba3d1d11
BLAKE2b-256 4d495ad5c3ff4920be0adee9eb4339b4fb3b023a0fc55b9ed8dbc73df92946b8

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dc7ce5accbbb8c9df9a79f8cef6a6df042f28e2250a6ae0d2ca70b06473fa03b
MD5 1ce5f8bda4541b038341c6a6a0e26e4d
BLAKE2b-256 0807ae46106efbf4bbc0090078aa4c406c38282cbe4e637bdb4b7f2e984140af

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a9e9d7552d34547b80843eaf64ab0737b19b2e8bec2514286b8cfd30861ca8b5
MD5 8fb8837a3cb11d1d89e69a9e2884c89c
BLAKE2b-256 5d0609b6a917b3759ef000428af0aa2597f983e20d9fbbcfeb826750f778fe6d

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6c74cbc1cbee26dd4f35f989cd80dccc40411f258dee476b29871dee4b483af0
MD5 4bb0a0fe2283375c8d252cd0a63aaa82
BLAKE2b-256 f4e2aafc6af854e792d212ff58e459f8d5d807568dc3f2b49ec41b677275e5a9

See more details on using hashes here.

File details

Details for the file torchvision-0.23.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.23.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b190db205f90206c230fc2f91cbdfd5733334babc0e0d19bddb90a40b8cf26c2
MD5 c1ff08effc3c016b72cb0e2a7b6aaa75
BLAKE2b-256 d53ef1f3bb3dd452b98ec2eba4820d777440abceb3d3a428a6c8243006fe47e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page