Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Coverage codecov
Code Quality Codacy Badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.9+)
  • NumPy (1.19+)
  • SciPy (1.5+)
  • Pandas (1.1+)
  • statsmodels (0.12+)
  • matplotlib (3+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.8 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1, supports 3.0.0b2+)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx-immaterial (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-8.0.0.tar.gz (872.6 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

arch-8.0.0-cp314-cp314-win_amd64.whl (934.4 kB view details)

Uploaded CPython 3.14Windows x86-64

arch-8.0.0-cp314-cp314-musllinux_1_2_x86_64.whl (985.7 kB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

arch-8.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (983.3 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

arch-8.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (967.6 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

arch-8.0.0-cp314-cp314-macosx_11_0_arm64.whl (931.7 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

arch-8.0.0-cp314-cp314-macosx_10_15_x86_64.whl (940.8 kB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

arch-8.0.0-cp313-cp313-win_amd64.whl (929.7 kB view details)

Uploaded CPython 3.13Windows x86-64

arch-8.0.0-cp313-cp313-musllinux_1_2_x86_64.whl (985.3 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

arch-8.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (982.9 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

arch-8.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (964.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

arch-8.0.0-cp313-cp313-macosx_11_0_arm64.whl (930.4 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

arch-8.0.0-cp313-cp313-macosx_10_13_x86_64.whl (940.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

arch-8.0.0-cp312-cp312-win_amd64.whl (930.4 kB view details)

Uploaded CPython 3.12Windows x86-64

arch-8.0.0-cp312-cp312-musllinux_1_2_x86_64.whl (983.2 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

arch-8.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (981.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

arch-8.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (964.6 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

arch-8.0.0-cp312-cp312-macosx_11_0_arm64.whl (932.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

arch-8.0.0-cp312-cp312-macosx_10_13_x86_64.whl (942.6 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

arch-8.0.0-cp311-cp311-win_amd64.whl (937.9 kB view details)

Uploaded CPython 3.11Windows x86-64

arch-8.0.0-cp311-cp311-musllinux_1_2_x86_64.whl (993.3 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

arch-8.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (990.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

arch-8.0.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (974.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

arch-8.0.0-cp311-cp311-macosx_11_0_arm64.whl (929.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

arch-8.0.0-cp311-cp311-macosx_10_9_x86_64.whl (940.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

arch-8.0.0-cp310-cp310-win_amd64.whl (937.9 kB view details)

Uploaded CPython 3.10Windows x86-64

arch-8.0.0-cp310-cp310-musllinux_1_2_x86_64.whl (990.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

arch-8.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (987.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

arch-8.0.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (971.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

arch-8.0.0-cp310-cp310-macosx_11_0_arm64.whl (927.7 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

arch-8.0.0-cp310-cp310-macosx_10_9_x86_64.whl (937.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file arch-8.0.0.tar.gz.

File metadata

  • Download URL: arch-8.0.0.tar.gz
  • Upload date:
  • Size: 872.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.9

File hashes

Hashes for arch-8.0.0.tar.gz
Algorithm Hash digest
SHA256 5e9895c2354b9475aff50797ff2191dc64dc5f79602baf0c9321310fb864b637
MD5 4113de9e7436c6873d827490654ec835
BLAKE2b-256 6150f8be4b21db5eb0490aef82b592d105baac957f601805ee7fe5b9182405b2

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: arch-8.0.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 934.4 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for arch-8.0.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 4849380bb831a1dc09891cd424f6623f163bde2403c66e376f9d0b5f8c1791c5
MD5 314668ba7eb68b02f81d71daf901258e
BLAKE2b-256 0ad114d3dab7283ea68a4e2d17be62d854af6df7e3d6f1b998a87d5be3ed8aed

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 119766cdb3ac9ebdad4077dcf8238fb2a4554ba3c6503bd4431161f43923357e
MD5 4f6e8b33d98f4ea96354a20b39b3e1eb
BLAKE2b-256 959940ca7262d2cc5d74a7b8be10e8a254e0063969edb50959c489bad8d2adb4

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 563bea8e594f712a38ec2186f6dcd0d55a73f1c203bd228958cad495d9d471f1
MD5 fa99dae8f6e350e52d523963cbcd4d8c
BLAKE2b-256 22118a3b956a532b26fe4f325d9829b09eba725eb25a3e89d568673e2015beca

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 82113ee290afac972f73ad6f61b4b4ebd57bf9a288c2df163f9b2bc1874f89f3
MD5 acb231ff64d1e8a4b3e3a6daa8d03d22
BLAKE2b-256 af8e27bf8ef574c507fd984283acd8b33ff066c2ee4beea4b8af9eada23a20f4

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5a2ee20c5a0d88eda12894d8fbb8320b7bfe3436c2e40fa16da918db54eb5b4
MD5 9ea621d52b9eb7a8da1024879fbba852
BLAKE2b-256 70c8533ad2ef4277d2f6c95e8038088de2d80c6a41137c7d23e00b08425e2c39

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8015f7bdcc14800dc2dc2acb01dffebddebf587df4aa27f62671e809ccfdefb1
MD5 e217a1f131641769faf83d9f6def89d6
BLAKE2b-256 96378d9ec002ec3e750f3ea2af42b67a1e3cf3a82523b556fd8d10d1f34a085a

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: arch-8.0.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 929.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for arch-8.0.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 bd73bd2d811bcf0551443b6e0a10bc25af002e9eb146aff164897c70aac35e85
MD5 843b8f812e25b709a644748c87d95573
BLAKE2b-256 f1e72d15374129c03b6f97321f837190cb19863204dbcff289e23cc37f035c96

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a985abc5367d225a6b346782dee9e7d84381c2af5ab795a6234aa1491c96f0bb
MD5 7f5c112efe68b4c099134f3b96af3d9d
BLAKE2b-256 8040d99c7d3e0a471d5e0f3e6b3ff1145db789e5a1c4e8fed25e8c22629e87fc

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8c1f1d8abefab2f69f7fdbef08cc18c8377667d3b8d197a1f301d97f0e686cd2
MD5 f772ffac30473a640af01ff6de556eec
BLAKE2b-256 d6407b7ac152c35c32da2a00ba3523ea84c358478b12ee7b3b2b6892e5b9d81b

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 aaefeb2b23276fe286fe554e7e69fea80daff4185ecdf9fc891ba1b2c1e49ad4
MD5 4e81786f7e0c87eb0539834dfef85126
BLAKE2b-256 1c04bdd65c773f6ce60cae50cb4f85bcf15dcbe687df75998966e5a236125182

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b75bc7f4af4da5aca6cbcc52284564fcce8c974cf7d89d8b9777d8c16a228b0
MD5 3419487fc495afb2d3d409ae9542a739
BLAKE2b-256 cbb873910773efffc2d35d2739be1bdc70dfcc58a83cff35c4d62e14acceca2b

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4320a9b3707e819a97f0b0a10847e529e2f765158c617a455987a34305018617
MD5 da53a3bfb4305ddebec8419ea5697577
BLAKE2b-256 d65178f84f9e486e173356931b2bfaf0c2a6d6923f1e8975045e3416ac388215

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: arch-8.0.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 930.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for arch-8.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8b13d261e0a681b3a8a2f9c588ab37a35500bca9f3bbcc6ca1ce2d999322651d
MD5 21ef17e68d22bc169b5a5380563d02a7
BLAKE2b-256 ef86612d45473d0865d41934b0580fa05e6aa48167b502d0136e8bd9dd5aa581

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fab6e25763e1ef516d8b6c932ef1d0aac3ec812d6b501fc57d8269333d02ce86
MD5 3a9b363ec594f1794d1d787e4677a1b2
BLAKE2b-256 dbbeb44592be8f7926e04f2646206ef83cd68f40e948465fff651b739412146a

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 13cbf04d45ecbee7578704a232f897cd02794d845f877158fb2838e6fb637887
MD5 34ff7742425b83ac5e9d19fe13fe09c9
BLAKE2b-256 a4d3da7d55f51bb31a10d1b4a01a22ec0180265a5afeed0d99bd4d0c7b3a61e1

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e551820a0640736c9e9b8fa10ce50e7ae4f31e570ec229c308a3b46aaf8242a7
MD5 69c315754b3abe7c2daa0bae7fd57db9
BLAKE2b-256 d81d82a772cbc8d64a804438a618f766574d3c87c888342240465761fdba9dec

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f4341b22279d82d0300ebd54d1d5f80324f31fc017c8138f47e810bdb81d753
MD5 c35543a8e2f02f0ed0bdc827dadeb306
BLAKE2b-256 8d54ab79d924327497fddb462ce51216d193e374ad2295b1003542802ed9a021

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 268dfe386f8c64a1973374bc0425bdf0c7c2250c2bfd7238d98bae701827ec2b
MD5 1732f7f7b683c258b8ec0fd8eeb307cf
BLAKE2b-256 846eb4379d1dee984f4a51afad9bfb49a3079ae196faf0bb834b7b5ad8e5ec6a

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: arch-8.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 937.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for arch-8.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2aa5e631f91283733592b44e0c0640da5f690f5895738ad0d26a007325e3d0fc
MD5 615a16e570a16322cb36c9fa48def51a
BLAKE2b-256 d24babfe066b00a5f1f0ab80dc5b7424f9fc1008116546fefcc1d17def0be9b6

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c9d0c8b26f49e3f8b7ae4ade15fac74555c95701a3e22463d991ce4ae7cea966
MD5 62c77f6e670239eba14890daafc559d4
BLAKE2b-256 6b9e4e2dad5b4b88d872a9afd29916ced89116cb31a7c81ed4cbfb2de972cae5

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 975ec3bdf7926335742ac362251fafe32b448b8f194dead062f22a00beef772d
MD5 3a37f5a2e3e39ac8c5e0a0a7b0099ce1
BLAKE2b-256 bc007cc035e2a08b9186cfbd0b5d3dd3967481f64722c3af69416edc8a182fd7

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b72818d66e3ba1f5fcf2a7af4d81a1da7c70e72edf9437144a013173e11b901d
MD5 38b70b6db568b1e4ad08527fbeee5836
BLAKE2b-256 94d844724b06cff6f51b977e8b947403c846be4645c9333d2cad350101b917ca

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d9cb343f15e71e9cee2415bffa1e3458aeb674a538118de71f1124b6c5b755a
MD5 2e9dafc8bbc9affdcef216adbbbafd66
BLAKE2b-256 b5427f1b880857839ea0841304586715c7d2a477552d04bcde32d1d55d8ccaa0

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94262bef94dda3f72182a8dfc21cab1a8a79750cf168f3cf2aec02d7217bee55
MD5 968fb3b54ec47030d954a7cff089ed6e
BLAKE2b-256 44b58f04a871c2e0f94430c15d313f88fe7808d80c4752b0ebdeadfec21dec8e

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-8.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 937.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for arch-8.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b56c3994069532c6621d211a333c62ae6b3cfeb3eef8089806bd4698062137ca
MD5 767545237c297b77d4a96e47a288eafe
BLAKE2b-256 2e41d6aa187e4f6d1567b51ac8a1d12ec1a78a55310fad2a7f2300a251cfbb89

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8ebe43e390e2df5e07cb1a5abbbdf545a31d858d2e504e9fa379f011ba4715ab
MD5 815e1a09420fb890a3b2f8c55e5c39f7
BLAKE2b-256 c4fc14ac8334ac7d49d7bf2d946f5f7789bff227b5bc50508eeebaf5558cd5d2

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ec799301d904318d067d8d919069efc2825e8cea1654b1ffe623ea8c591fff5e
MD5 8ff0313b0108d530b1ddabb4ad88ed4b
BLAKE2b-256 44c50e9a7a85eb0135d8d551660bb930561a49a506fe9d086cdefb530589f654

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 aee1099e0d12538d8d1ff391ddb8061c42e4864d199ca6887487bedb58b1dc9c
MD5 6fa2b282b7b4a7fa0abea4612014593c
BLAKE2b-256 a9a8c67f56cacfc1fbd33085cea89f04a262de47fc5503e93d0ca805dfa49916

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51641954adb35f969b5c3333f6527fb090720fc0c973b6d2c4d927c8cc5dfe58
MD5 11ed69133d077a21b4fd9bf843127430
BLAKE2b-256 34a430ed8bac322681cf1ec86e644f6f531aeca6b1d20a26e029df537042988f

See more details on using hashes here.

File details

Details for the file arch-8.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-8.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb60acaa9caa1353b75f19db910ac88e4238f4ca40282418e728174b1d3fe297
MD5 0e10c8820c980e96fa8ee471c87dc921
BLAKE2b-256 0ff7addc52355dd804416b086cb85287161bb8ee0e53eb9f527f45af93dff76c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page