Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Code Quality: Python
Total Alerts
Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.7+)
  • NumPy (1.17+)
  • SciPy (1.3+)
  • Pandas (1.0+)
  • statsmodels (0.11+)
  • matplotlib (3+), optional
  • property-cached (1.6.4+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.7 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx_material (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-5.3.1.tar.gz (3.1 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

arch-5.3.1-cp310-cp310-win_amd64.whl (843.6 kB view details)

Uploaded CPython 3.10Windows x86-64

arch-5.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (905.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

arch-5.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (882.5 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

arch-5.3.1-cp310-cp310-macosx_11_0_arm64.whl (857.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

arch-5.3.1-cp310-cp310-macosx_10_9_x86_64.whl (886.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

arch-5.3.1-cp39-cp39-win_amd64.whl (845.3 kB view details)

Uploaded CPython 3.9Windows x86-64

arch-5.3.1-cp39-cp39-win32.whl (814.4 kB view details)

Uploaded CPython 3.9Windows x86

arch-5.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (908.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

arch-5.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (885.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

arch-5.3.1-cp39-cp39-macosx_11_0_arm64.whl (851.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

arch-5.3.1-cp39-cp39-macosx_10_9_x86_64.whl (879.0 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

arch-5.3.1-cp38-cp38-win_amd64.whl (845.5 kB view details)

Uploaded CPython 3.8Windows x86-64

arch-5.3.1-cp38-cp38-win32.whl (814.7 kB view details)

Uploaded CPython 3.8Windows x86

arch-5.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (907.3 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

arch-5.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (884.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

arch-5.3.1-cp38-cp38-macosx_11_0_arm64.whl (848.6 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

arch-5.3.1-cp38-cp38-macosx_10_9_x86_64.whl (876.1 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

arch-5.3.1-cp37-cp37m-win_amd64.whl (842.5 kB view details)

Uploaded CPython 3.7mWindows x86-64

arch-5.3.1-cp37-cp37m-win32.whl (810.9 kB view details)

Uploaded CPython 3.7mWindows x86

arch-5.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (903.7 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

arch-5.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (883.2 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

arch-5.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (876.0 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file arch-5.3.1.tar.gz.

File metadata

  • Download URL: arch-5.3.1.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.9.7

File hashes

Hashes for arch-5.3.1.tar.gz
Algorithm Hash digest
SHA256 106f15c8770a34f71239b6c88f8517814e6b7fea3b8f2e009b3a8a23fd7e77c2
MD5 33b948b512976436b1c6c069469f6d1e
BLAKE2b-256 fa787ea7abfe27e7c9d95160e38b16cca24cb4b6adc915d3d94eaf74b5e1f901

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-5.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 843.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 522e19656759a9b8408cda652ddadaf8e65e23aff433c4b22a11ea79bd3c2b67
MD5 540df822996547555886c9da204bbe00
BLAKE2b-256 c665ee5663430cdcbc6f9771c27a12d65f0b7d98d6a7439a8aa5d1a5902597ba

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92dbbae9bc19aa38492a1b5968d855e7f69f18e626bfba3dd42e43182ea7907d
MD5 aba63aa2e929d6ff5249fd33e6654426
BLAKE2b-256 2a6323ccffcc0028081efa67ad32174034d3627a5f999e801396550873ac8f36

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c503acacf88786a78c0ea6606e292c7bfa66e42603c72b7d9fe8dca021a9ddf
MD5 f87a9313870361335539ab42a1d8fcb5
BLAKE2b-256 eff16aa426bc31e761f1792039954b736d47a724404476509dd207a35515a18a

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f9c9220d331618322517e0f2b3b3529f9c51f5e5a891441da4a107fd2d6d7fce
MD5 808839f6117f55c66a891f77f39bec3d
BLAKE2b-256 6229fac5168764a993e31ba8e7c97490695340baf194ebe4139cb9ad30396059

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75fa6f9386ecc2df81bcbf5d055a290a697482ca51e0b3459dab183d288993cb
MD5 104745ca5099790f8ec5032ca8731b0c
BLAKE2b-256 149f5615bc7e2b52a1b3140f9772f896b37af0830e4bc42928d74d31176073b9

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-5.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 845.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bed3352ab7d4ae79a206acb618f786a3f4bc4080e1b90f8c0b19c5a070a365a0
MD5 c09a2b217debd0f1e01d41b991536259
BLAKE2b-256 f167a10d02243941ccc0f21f8c97d109d8b24caf1463890940b89374be61c27f

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-5.3.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 814.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 aabfc7b96416d6b3054164292ee364d1e86d2906a152faf1489562ba1669b2df
MD5 ef2fba94df7eb5f8121f1546c0ddee85
BLAKE2b-256 a7d5c4b8c8b54f0b206d61bed6372054820fed95825f482538244e33faf79b03

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 236a8dc7414d557a59cae5dd39efff4fb49ab3fb792b68212f6c03a0c088d947
MD5 0e4a400d7f230f29584eba11367aa7d9
BLAKE2b-256 b0ef34c0128efffeb2ef0acb0bb35dcead0f2cea26398dc1c361c7d105e245d2

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fd37af7633ae1d5d5719b5eaa7ed97b9a3450f2ed699e188c2c67f7e88ca7b44
MD5 329ad000d2d5ce9d760d8d7fb8721a78
BLAKE2b-256 243091c6484c2ca0890b096f79697dfc5a4dfbd857161fdd35a18246c04af4b1

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: arch-5.3.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 851.3 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38857f8b2ca2fc46c7e1ac7889354eb4f16e7360283586a3730004097648b539
MD5 3f06f52dd0410bf77fa7aa9369449498
BLAKE2b-256 a2ec1a2662780530658bedf8939c83c6d097e37295ba46f047f8ac8916f0a8a0

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.3.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 879.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 03a5cb976ffb230f59d827242e072cf605f70a993be0e7069d30378e13cb60f5
MD5 b0992cc573ab132b60814d085e80c3a6
BLAKE2b-256 a107c017992919e7a0a4aa651e7c69deed09b12c182446a7b06c41f6ccb54933

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: arch-5.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 845.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0cb9b0c5751a3a0ecefe47842b40a04dae393d7754489128ec22df0649d49b52
MD5 d2ca9500d1423bda5a0def5322103558
BLAKE2b-256 9a4a6b612388415a6099b8f9dbfd7d2ddcecc4a958b1feffaa4d983c74e42550

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: arch-5.3.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 814.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ae2e8026085ca841e6c31144913462e79706c8604e46deda4558ec252a4c5833
MD5 9d80ee3eb082006a783fb66f7fd75ded
BLAKE2b-256 d5199b094199768a9454615a8b4414c1255521db2129c2f4a923ce0ffd0a51b8

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b862462dd22297073b772e08144f31b7be05080b4063de5ce794c969d0348a94
MD5 ed01722aabe586bb8a6d532480785cce
BLAKE2b-256 072141427992db4a4cf989ec679dfb65e2a6f666a4679d522be55ee7156e105a

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84c3944a47d28923bad70a7a6a11081d55482b80ef6abb8581a7f98e05ec9584
MD5 3120ae3b7000ca5939f8028374fac5a9
BLAKE2b-256 6764cf1f9802d63e84a50c490af1fdc4a18850912aba00a212fe4fb659d3917c

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: arch-5.3.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 848.6 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74e629d33ff41ab2a0917f475703826fd3c0976a3dc236873b19b41f719afe5b
MD5 863bc372d3b55e9ede3483427da30eb7
BLAKE2b-256 05e4278f1cdd04c933df97ef94647c499f119734b66942211babe9718420371b

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.3.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 876.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef94fd5738fc0bccc4ee8a27871d5d7052b3962d784b397acf7f7bcc3afc34f4
MD5 6efa6ebff702e5c3fee6587854eaf27b
BLAKE2b-256 0ba7059ac06a71ba4b1b094ab6ca25ce02668a99d022f562d08744747738dd9b

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: arch-5.3.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 842.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 32df883248a7d6f7ee204bf9ccb4a141ece43ab3b06ee22627cb84c8b4b7d24b
MD5 5875a996d6dc5ccf2737082a74de10f6
BLAKE2b-256 ee6447b6d3a5efb901c253c9ec5f4d6bb969d4692bca095dc2f19af196ca5f7a

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: arch-5.3.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 810.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for arch-5.3.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7694ea6085bf817e09ddc8fcb4a871a0f255d3b6b486696cfa16121df591fdb9
MD5 da3fd9c08cb3da9af246c782fdee8299
BLAKE2b-256 b155ada02894a5bd31790859baf843a84d6a8922f04ad8ea31ba0efbc5e51bb7

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96eb779fd90f16787376bc3ada24f3e162bc74f746d1fc3fb809ec36f954007e
MD5 d0a717c1ed0fab8860285cb6e07cc69e
BLAKE2b-256 3872a6bed593589084ed30b9b71d57b88ce3abbb52aa667987a6ea421ae64655

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aadb88a0199b51c6134634618fd074ffbb430a5d3c43126da0b6d259447e1f36
MD5 1e8e2b7d2f3c7588b7971251a7627316
BLAKE2b-256 743f2a56ffc87cbd545f7b4b62cff4d72b4365d21b0c67cb11f7110e06450b32

See more details on using hashes here.

File details

Details for the file arch-5.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c23b5138198127bc1a7ec432139fbe855d399e51f6391125b5dc3ab2f4a7860
MD5 0860e970e8a275a1b94b665852dae745
BLAKE2b-256 b78a5b755ef995a6fcfa56d0c688e4eced7bc3a97c24f5322b032ca41454881b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page