Skip to main content

ARCH for Python

Project description

Documentation Status CI Status Coverage Status DOI

ARCH

This is a work-in-progress for ARCH and other tools for financial econometrics, written in Python (and Cython)

What is in this repository?

Documentation

Documentation is hosted on read the docs

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard’s site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g FIGARCH

  • Improve docstrings where unclear or with typos

  • Provide examples, preferably in the form of IPython notebooks

Examples

### Volatility Modeling

  • Mean models

    • Constant mean

    • Heterogeneous Autoregression (HAR)

    • Autoregression (AR)

    • Zero mean

    • Models with and without exogenous regressors

  • Volatility models

    • ARCH

    • GARCH

    • TARCH

    • EGARCH

    • EWMA/RiskMetrics

  • Distributions

    • Normal

    • Student’s T

See the univariate volatility example notebook for a more complete overview.

   import datetime as dt
   import pandas.io.data as web
   st = dt.datetime(1990,1,1)
   en = dt.datetime(2014,1,1)
   data = web.get_data_yahoo('^FTSE', start=st, end=en)
   returns = 100 * data['Adj Close'].pct_change().dropna()

   from arch import arch_model
   am = arch_model(returns)
   res = am.fit()

### Unit Root Tests
  • Augmented Dickey-Fuller

  • Dickey-Fuller GLS

  • Phillips-Perron

  • KPSS

  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

### Bootstrap

  • Bootstraps

    • IID Bootstrap

    • Stationary Bootstrap

    • Circular Block Bootstrap

    • Moving Block Bootstrap

  • Methods

    • Confidence interval construction

    • Covariance estimation

    • Apply method to estimate model across bootstraps

    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from Statsmodels.

   # Import data
   import datetime as dt
   import pandas as pd
   import pandas.io.data as web
   start = dt.datetime(1951,1,1)
   end = dt.datetime(2014,1,1)
   sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
   start = sp500.index.min()
   end = sp500.index.max()
   monthly_dates = pd.date_range(start, end, freq='M')
   monthly = sp500.reindex(monthly_dates, method='ffill')
   returns = 100 * monthly['Adj Close'].pct_change().dropna()

   # Function to compute parameters
   def sharpe_ratio(x):
       mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
       return np.array([mu, sigma, mu / sigma])

   # Bootstrap confidence intervals
   from arch.bootstrap import IIDBootstrap
   bs = IIDBootstrap(returns)
   ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

### Multiple Comparison Procedures
  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper

  • Stepwise (StepM)

  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Requirements

  • NumPy (1.7+)

  • SciPy (0.12+)

  • Pandas (0.14+)

  • statsmodels (0.5+)

  • matplotlib (1.3+)

Optional Requirements

  • Numba (0.15+) will be used if available and when installed using the –no-binary option

  • IPython (3.0+) is required to run the notebooks

Installing

  • Cython (0.20+, if not using –no-binary)

  • nose (For tests)

  • sphinx (to build docs)

  • sphinx-napoleon (to build docs)

Note: Setup does not verify requirements. Please ensure these are installed.

Linux/OSX

pip install git+git://github.com/bashtage/arch.git

Anaconda

Anaconda builds are not currently available for OSX.

conda install -c https://conda.binstar.org/bashtage arch

Windows

With a compiler

If you are comfortable compiling binaries on Windows:

pip install git+git://github.com/bashtage/arch.git

No Compiler

All binary code is backed by a pure Python implementation. Compiling can be skipped using the flag --no-binary

pip install git+git://github.com/bashtage/arch.git --install-option "--no-binary"

Note: the test suite compares the Numba implementations against Cython implementations of some recursions, and so it is not possible to run the test suite when installing with --no-binary .

Anaconda

conda install -c https://conda.binstar.org/bashtage arch

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

arch-3.1.zip (110.8 kB view details)

Uploaded Source

arch-3.1.tar.gz (91.6 kB view details)

Uploaded Source

arch-3.1.tar.bz2 (77.7 kB view details)

Uploaded Source

File details

Details for the file arch-3.1.zip.

File metadata

  • Download URL: arch-3.1.zip
  • Upload date:
  • Size: 110.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for arch-3.1.zip
Algorithm Hash digest
SHA256 5ec8b4812c3c3d25ac084527439aeca881bd4bd4c8aed5370c447af01faca7bc
MD5 ab60e0098dbf1b0c784f805eab19c451
BLAKE2b-256 ddb72672c937de6a7e4400628c6349415fc6ad1a8c2b29739b7b5a1a4537fea8

See more details on using hashes here.

File details

Details for the file arch-3.1.tar.gz.

File metadata

  • Download URL: arch-3.1.tar.gz
  • Upload date:
  • Size: 91.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for arch-3.1.tar.gz
Algorithm Hash digest
SHA256 c73bcb2e455e01266316b26ba67b1f7e6cc27da0dfad67b6b9c6fd4e652e690a
MD5 d2e6a0de940af9aa9973847f7fae0729
BLAKE2b-256 223c6dfff1bf7c782610cc1951f5a2a1c06ccd50cd2b04bdd34aaabc43f5717c

See more details on using hashes here.

File details

Details for the file arch-3.1.tar.bz2.

File metadata

  • Download URL: arch-3.1.tar.bz2
  • Upload date:
  • Size: 77.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for arch-3.1.tar.bz2
Algorithm Hash digest
SHA256 d4e93272aa0216d15c7a628f7c23ea66e738552fefdfb14ab9698d28a94e4c55
MD5 b86f5a38a57e98b3b3610bc8d919935a
BLAKE2b-256 5893de951f6b00db32e7b933ecd6648e063d01b7d12fc3b53c36f18b294370f8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page