Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Code Quality: Python
Total Alerts
Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.7+)
  • NumPy (1.17+)
  • SciPy (1.3+)
  • Pandas (1.0+)
  • statsmodels (0.11+)
  • matplotlib (3+), optional
  • property-cached (1.6.4+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
pip install arch --no-binary arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
pip install arch --no-binary arch

If you have locally cloned the repo, you can install without building the binary modules by running

python setup.py install --no-binary

or by setting the environment variable ARCH_NO_BINARY=1.

  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch
export ARCH_NO_BINARY=1
pip install arch --no-binary arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.7 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using --no-binary)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx_material (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if --no-binary was used.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-5.0.tar.gz (940.5 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

arch-5.0-cp39-cp39-win_amd64.whl (848.3 kB view details)

Uploaded CPython 3.9Windows x86-64

arch-5.0-cp39-cp39-win32.whl (809.9 kB view details)

Uploaded CPython 3.9Windows x86

arch-5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (868.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

arch-5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (854.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ i686

arch-5.0-cp39-cp39-macosx_10_9_x86_64.whl (876.8 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

arch-5.0-cp38-cp38-win_amd64.whl (849.1 kB view details)

Uploaded CPython 3.8Windows x86-64

arch-5.0-cp38-cp38-win32.whl (810.9 kB view details)

Uploaded CPython 3.8Windows x86

arch-5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (869.5 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

arch-5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (855.3 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ i686

arch-5.0-cp38-cp38-macosx_10_9_x86_64.whl (873.9 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

arch-5.0-cp37-cp37m-win_amd64.whl (844.7 kB view details)

Uploaded CPython 3.7mWindows x86-64

arch-5.0-cp37-cp37m-win32.whl (806.1 kB view details)

Uploaded CPython 3.7mWindows x86

arch-5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (875.3 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

arch-5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (860.5 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ i686

arch-5.0-cp37-cp37m-macosx_10_9_x86_64.whl (873.6 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file arch-5.0.tar.gz.

File metadata

  • Download URL: arch-5.0.tar.gz
  • Upload date:
  • Size: 940.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for arch-5.0.tar.gz
Algorithm Hash digest
SHA256 35d3e4a876d68f17af1bf038a12f4d11c172d4c5e21a6995fcc5cb2325e287a1
MD5 3ca3f93f04532bb1e292c075cd484a00
BLAKE2b-256 1190371a4eb40c5f0f6947e3d754c3d887c819c784d8d5fc5888d30069819cba

See more details on using hashes here.

File details

Details for the file arch-5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 848.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.0

File hashes

Hashes for arch-5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ca3328144c76cf910b4c9c9d7cb7fda1a87fcd1fd2c70925aa1d14bacebb8060
MD5 d1a8a4d5aadfbb1b5f08140977a9e96f
BLAKE2b-256 81b6bb7a5bd48dbcc626d7e547e6502ab54b7451f00bdce715e580ffbe37edb3

See more details on using hashes here.

File details

Details for the file arch-5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 809.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.0

File hashes

Hashes for arch-5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6bfacc9388b70f8841d786f29a3681bc0ba68402b046f5cd59ed2f47b65370a1
MD5 3abcdbc87344e7b04ae21bafb39bc90f
BLAKE2b-256 8feb7f880b8cc3ed53e7bf7467b18cbfefa3f91df16aa8c35a702df344b3b8bb

See more details on using hashes here.

File details

Details for the file arch-5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 868.4 kB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for arch-5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 40517fd726230d62afa22f607c87834598016185357a231a3e2eae75436640ec
MD5 4965306f43379fbe71ced6261da99b3a
BLAKE2b-256 8670d77867d216bf78be70c3b3423c612bff11a1a17ee438e0f6507ac97ae4d4

See more details on using hashes here.

File details

Details for the file arch-5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: arch-5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 854.7 kB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for arch-5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 72fdf872eb67a660d2509d5c19c89aca7548722eefdf5af2fe0c1db8f783ef24
MD5 ea23c62477c40d1044e4ebe2a21bbae6
BLAKE2b-256 f248b3b211ed1fde6965e7558955fde250883bdf740b774bb5d073172298a0f3

See more details on using hashes here.

File details

Details for the file arch-5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 876.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for arch-5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60967ec250f0d5c86cc6326291c30bcb9a5e5d296d5991b282b91d7e40227fc0
MD5 b749152eeafb77adea858b10c9072451
BLAKE2b-256 1848a12573a2a3c09415c3cff2663737bb3fecc9826406943413280b6c88ac09

See more details on using hashes here.

File details

Details for the file arch-5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: arch-5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 849.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.0

File hashes

Hashes for arch-5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9fd7dc45598989cd2019e01844af8be6ecb976a2d076a3cc5032dbca2c7d77d6
MD5 716ff018c645629e6330d257deb71039
BLAKE2b-256 0a042d6d455a96c4e10f2b2a517332c2d9e3c6ff961d4c6570eb6eeaf6e4af0b

See more details on using hashes here.

File details

Details for the file arch-5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: arch-5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 810.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.0

File hashes

Hashes for arch-5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dd017fc6cc7a5e3d7132e310e11cac2d60c23410c9cc208bcfb13662bcbc3d83
MD5 5ac637296a95a08759493e75690714af
BLAKE2b-256 87947578aba7a7f6d0ad0b0c104585513a0238836a31303eaf97e164d928d309

See more details on using hashes here.

File details

Details for the file arch-5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 869.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for arch-5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1790caf6b38893a760b1552933f9630cf745b190f14381d41ab544fdabaee78f
MD5 946ca54157aa2e372181312ec542856e
BLAKE2b-256 f8dac9cdd1a506ac4d65f23e5f2436ad0473c71f62149b8ad9a3f28a48e557dc

See more details on using hashes here.

File details

Details for the file arch-5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: arch-5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 855.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for arch-5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 73528eb43bfee5c7c11fcf78b4b2709322664963e1d3252bf00ceed4ec8a2fad
MD5 4acea1ff266eb003feba13bd8edf808a
BLAKE2b-256 01322730316c05d3de4206c91126c2bd9295ea7fe635b27aaf8f39edf017f4b8

See more details on using hashes here.

File details

Details for the file arch-5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 873.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for arch-5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9ad20a19995aa2f43f6c96ec94b18bfbe06c9dec8aa4a821d20e2c5f1927ca13
MD5 fe64f2257604f23705d406885137eeda
BLAKE2b-256 5e4ae5784ffd2f6d7f3926e27eea3cc1d61d3f58eb921b86ecc84af71fe6d21b

See more details on using hashes here.

File details

Details for the file arch-5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: arch-5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 844.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.5

File hashes

Hashes for arch-5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 406c8d36ded5f96321285e0a09cddb3c8e1335cf4b48648c14e06d4c9da8e683
MD5 fc87cf5dc657e3f7d6ff106d8f5adf54
BLAKE2b-256 291dbb74fe98a936f9f968a74c9bb74c34aeebd987fc4b290d1536d021cd9e91

See more details on using hashes here.

File details

Details for the file arch-5.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: arch-5.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 806.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.5

File hashes

Hashes for arch-5.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5fe3c45050c6b0879ec8742058cb1c04154f41c1ad0ad2bd308c6d3d0b9f5ba8
MD5 1e2768758cbe30fb3e9cbfd43db4f70d
BLAKE2b-256 70123d90ebc86292bd6a02b551ec7eb3bb3fefce58bb8bc267d3050051936a6e

See more details on using hashes here.

File details

Details for the file arch-5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 875.3 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for arch-5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f0bbe598620148a9a3a26562dce13491c944cc019579c66c1dc2efcbaefd9d7a
MD5 b8394997cd72292b68c133cf92adadf3
BLAKE2b-256 7f46ed3264274e2330ae971ab309d26ac7dfba043d985140cf0daf654d12d9db

See more details on using hashes here.

File details

Details for the file arch-5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: arch-5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 860.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for arch-5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 afed719c7ad415f14a5bbf71ab07ac852d8ea6b209397fc93ecf3e5fad7ea312
MD5 03b9b3d579884c75bb8343aedeac51d1
BLAKE2b-256 2376f6114664a76087f63dfa9500dbe98092705db03fd5b15d07d5f538c043d1

See more details on using hashes here.

File details

Details for the file arch-5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 873.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for arch-5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ac56533d20ef50e212438dd46bced3f2fbe8eda0300587efd9dc3db22bb07b6
MD5 19e52442cb83c3b772d5a23f143b6728
BLAKE2b-256 99173d5dff28404f9270c461106808c6013c1342ce8ebf92ed10996cd7e9c65b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page