Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Coverage codecov
Code Quality Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.9+)
  • NumPy (1.19+)
  • SciPy (1.5+)
  • Pandas (1.1+)
  • statsmodels (0.12+)
  • matplotlib (3+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.8 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1, supports 3.0.0b2+)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx-immaterial (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-7.0.0.tar.gz (3.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

arch-7.0.0-cp313-cp313-win_amd64.whl (923.1 kB view details)

Uploaded CPython 3.13Windows x86-64

arch-7.0.0-cp313-cp313-musllinux_1_2_x86_64.whl (983.4 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

arch-7.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (975.7 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

arch-7.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (945.3 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

arch-7.0.0-cp313-cp313-macosx_11_0_arm64.whl (923.1 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

arch-7.0.0-cp313-cp313-macosx_10_13_x86_64.whl (943.7 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

arch-7.0.0-cp312-cp312-win_amd64.whl (924.2 kB view details)

Uploaded CPython 3.12Windows x86-64

arch-7.0.0-cp312-cp312-musllinux_1_2_x86_64.whl (984.2 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

arch-7.0.0-cp312-cp312-musllinux_1_1_x86_64.whl (986.0 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

arch-7.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (976.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

arch-7.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (946.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

arch-7.0.0-cp312-cp312-macosx_11_0_arm64.whl (934.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

arch-7.0.0-cp312-cp312-macosx_10_13_x86_64.whl (946.7 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

arch-7.0.0-cp312-cp312-macosx_10_9_x86_64.whl (953.6 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

arch-7.0.0-cp311-cp311-win_amd64.whl (924.9 kB view details)

Uploaded CPython 3.11Windows x86-64

arch-7.0.0-cp311-cp311-musllinux_1_2_x86_64.whl (996.3 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

arch-7.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

arch-7.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (983.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

arch-7.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (956.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

arch-7.0.0-cp311-cp311-macosx_11_0_arm64.whl (932.9 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

arch-7.0.0-cp311-cp311-macosx_10_9_x86_64.whl (956.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

arch-7.0.0-cp310-cp310-win_amd64.whl (925.2 kB view details)

Uploaded CPython 3.10Windows x86-64

arch-7.0.0-cp310-cp310-musllinux_1_2_x86_64.whl (996.7 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

arch-7.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (999.9 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

arch-7.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (983.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

arch-7.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (956.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

arch-7.0.0-cp310-cp310-macosx_11_0_arm64.whl (932.6 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

arch-7.0.0-cp310-cp310-macosx_10_9_x86_64.whl (955.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

arch-7.0.0-cp39-cp39-win_amd64.whl (926.4 kB view details)

Uploaded CPython 3.9Windows x86-64

arch-7.0.0-cp39-cp39-win32.whl (886.3 kB view details)

Uploaded CPython 3.9Windows x86

arch-7.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (984.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

arch-7.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (957.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

arch-7.0.0-cp39-cp39-macosx_11_0_arm64.whl (933.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

arch-7.0.0-cp39-cp39-macosx_10_9_x86_64.whl (956.8 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file arch-7.0.0.tar.gz.

File metadata

  • Download URL: arch-7.0.0.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.14

File hashes

Hashes for arch-7.0.0.tar.gz
Algorithm Hash digest
SHA256 353c0dba5242287b8b6b587a70250d788436630bf3b7ef6106f577e45d1ec247
MD5 b4e04faddc4c987adc286e6da48678c2
BLAKE2b-256 e1956e8cb7cf162c761fadfc8fc1db5853cdc15bab27cc2aba53461005db7a9c

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: arch-7.0.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 923.1 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for arch-7.0.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 fdf62bc53e54f9ba634b46fd6a97ca2a398e1f836ecdc4b35bbbcee56e84ff0d
MD5 deb07ecb559b8135dded43083977600e
BLAKE2b-256 7cb229438b46f296e3b134318506be6ad42b2e9d5bad3efd0ab81b3fba5fd590

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c2c89e9eb617fad72ff75c408b38dcef9796613e4a5e4eb6cf58f394be6519a0
MD5 8b02e0128a9c8ff702ab2b73b8a7cbbc
BLAKE2b-256 36740f64174549ab11287b5b25d051c490a7e0a33176be61119b21bcc81ace0b

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dc8cc95129f1ace0d0ca79894d7d9a86d1ec16cf45588391a87a91e1322c323
MD5 6c4f012ffa6d645e2b954e4584dd5c4b
BLAKE2b-256 3bbe41f53a72490059a2544785c1a8a0f8e6a2cda5141044211d856bfc3d7dff

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77a85b988c6eb56a07d4bef040935a54215f2561ad6206ac9a4d0d0edde7b66c
MD5 1b47c341b3cafbb95c1e974e35462300
BLAKE2b-256 a7ef1e46f61ad2f4c1046c30e45b7a63ce81e7c94f72ef1b5a857eee2385c1b0

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41c390509c5d80c07f01de70e1a5617a5b40947052ac597002b4f727cac2c6aa
MD5 5472e696f8e0432f734f3e82a6ff7b57
BLAKE2b-256 96fb402a6593ede571d16f85b67764700e41649f85fa2145918bec14a6c0283c

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 14b8712010a33633f48bd75abbb9f3d6315c688920ce60a3b99617f12b59fa90
MD5 366ef7eff929ded54972a2868aec4da9
BLAKE2b-256 718a0f473d8bb1fd1e20ed8c48a4fe3d9a826f8244e3f38207013066eca143d6

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: arch-7.0.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 924.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for arch-7.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ce4f93fae6a3017663b77873c1cb1928b9c74aa6760e98c02560bb312b68939f
MD5 58429418737fdd3dc756aebb129854b5
BLAKE2b-256 2dc603677f1f7e3fda474ca64e2d2ab4297beb20fc2041debcc8e9c7c7a702a8

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c7c0cc57e51bac88f7802900290f5df60060fab56577987a078919914702d6ee
MD5 fdf26b477af6f17746fa54f16709e253
BLAKE2b-256 d1fb09fadfe8cb3bb5fc4dd93421b7913e2bfc6fbe808270b4145cede8ba625a

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 459823719100a3244ec80bd9338f92657087bb5f7184de8eb4f67b915ef4b4a2
MD5 5aa8288a7dc76bebad05881e6983d4cf
BLAKE2b-256 fbc87d1e3661019f31ecb7b21a0e5bcae36d1e83c1eef0bcca6e3525ab80d258

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49eb9a2f15914e0ad4593a1ab2023ecc489100aa94004b869d776b338afeab3d
MD5 dab3eaebb8848f8ff46a1bd4d8953e9f
BLAKE2b-256 5f7542056e0deefd43699431256417cc86a5c441501779a4b5275cdb75f2a764

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdc3eec814ef0be4a7f42dae7fa4e8d14ddbe20f65abe7f19b5926c0f8488855
MD5 a020505f81d58aa29b6335e1f4098705
BLAKE2b-256 c700713ae10b16d91c2df86d1d72cae8c451455849dbfd13a10d95da93ae0132

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8112708611ee0a16ec5df5ce0018ec108c644f5f6f4241f0644b03521a0dcba8
MD5 6e81c6e3c6ccbff7aa42a272f7de79ab
BLAKE2b-256 314fc46fcf8e649894ef12deb6f3d1e6252c94ab2e9f9cf52aeeb6894bde71d0

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 92f0641474d22a25ec6321da6db047bfe14e95bf4ff74597d1d7928978502cf6
MD5 a1020b09639057dca0749e2f5461c9e1
BLAKE2b-256 81fa632eff912325b9466d9a8288d0e9d7ee38fc92c2ad91753a205c8a4f1afd

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0834ac42713338a9f81fe2ccd4d75122fcc74f41b34085172bc82c605e88e149
MD5 25f4a7055c9f20aa6da9efce84b0680d
BLAKE2b-256 bd88c9b88c62a7caf4b3d376d95589245808e385f7aea068cb44db02c3bbca75

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: arch-7.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 924.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for arch-7.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dda93494e89680d71940f192419d8145849e02c14cd1673a8dc04dcb2f28bea6
MD5 39948bd55596ba670a86a0176855e19a
BLAKE2b-256 3708acd7fbc1e15b4701b5be3acd6fd575865a274885ea6bc72ec7af909cc7e5

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5197fd812d88bd94893df27ac280803fe6044cfd1a9824d4610f15c3c5cafa00
MD5 4417f9f2c56f8f53a6533a539da178dc
BLAKE2b-256 bd1e226183b3ab1418e130b9755c67fbe23829137265bb752567a0c0b896d96c

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 39491a4661cd3ea4fdf8c9238efbefdcc08e28d6eb8b612e1f52a6edce4ab6ed
MD5 9a3c40314c0e33de1df7ceb243558ff2
BLAKE2b-256 4af544c0baadb222d36e078f4b5f40b18da3e36294b2d1a84889776730424a75

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aeb75e732e949eff324625bf76595f2bf3448fe288f62506c91c23e8d942ee4d
MD5 2eaae10f18f7969f288ea14561eba292
BLAKE2b-256 84d36a8fea5fd1d50fce9578c5aa2a42031e4c2dbf8cf653f87b440406388d2d

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb7e2b427d7cb4b1ea6db12d7ecc221022d9481a430d7a8f15494bcaeebff21b
MD5 262fa351cbe18e3b24e246879125585a
BLAKE2b-256 17c9a9a950f85955d03f998de40f5b81a2b39dca89a67baffd7cb9778c4aac19

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c96463da782c0a25dae9decd3d348b04528dd60a6fdab6d881268d29e3d4bba
MD5 72604855f10a2f0ba547d1721f51309e
BLAKE2b-256 4e566f5e3a16954726b335ccaf31cc34823405a92428f76dc0a989698af6d8bc

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 50869a4a38ed410263d62ec0412b5d913f85e636f0e9a2a8486c12fd07df6e9c
MD5 4804cd5a56d4f9753dfa909738eb8945
BLAKE2b-256 3e5bd6ef1ce2a6a6ace0184234b0f2bfdc754980814fba4802ccf9415d746579

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-7.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 925.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for arch-7.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e31441bbe1d104eb3b09032c937be7ca633358f712f9c28be75750238867e38d
MD5 b79a384e1e0aa1fbc7dfd04685628280
BLAKE2b-256 811ecbb4a9ab221b5390995e72a2f190ce6d601a9a0c448ab0ff6a7d9bbb87ec

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d0e570c0d5994c507b21024823ab88742e4cd9a4d03b0bb7eb20afb0135891d5
MD5 0fcd46b6195971ca7dc33d3790abb4e2
BLAKE2b-256 beadff002c4a2e7135631505f96d3c40a2075b2a49134c4478eb431d3766be9e

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aa25f45d2e66902c8feeb8ce85d3fd476d9c5c885db5f227ee7e672820d6e61b
MD5 e7c8de9d44c6f482b5bac0835bd0aa1d
BLAKE2b-256 3c8ef55d132a7a18a386ffc8593ca22bbbaf6032c6fb5093e056a0643bfa1b71

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9067049b4c036438360d4ec5eea5ef7d784ac3dddd0feb390ab0631b1d400159
MD5 012df9a19f433f3d2eb9d0a7cb55b0ca
BLAKE2b-256 3badc2469616c462d50f14ca33adb8819157a04ba2c3b3a56e79b6a4d734bb36

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e07207387b89b94ac74cfe68c2ef5969cc7a84a1f7b05d6913a4b1aef84418b7
MD5 0ba78b3c89cd1b00f2121a67e7ba5843
BLAKE2b-256 8d78b3f05e3c36317d4bf738ee4b3d78db8c47d8ab36ca2d9413c685a28be26c

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2129194ed501feb9bea3283dda27a4285643f6083ed0b324009b2fe6c5537e72
MD5 a195f74420b4ab47dc781aeb413a43a7
BLAKE2b-256 927c032d770eb7f931c5ddf16973c35380554557adec8c069ffae5641c4fdfd3

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77eb815c182704f6cee51293a4888ab5ea094ff32ffaaf50e191ffb6bb7fe553
MD5 dc9fb0955b4130ae1efdffc5f6dce580
BLAKE2b-256 7b62e2e01579e941e576fd21886e89f715f1c3f5ad85a5d5f5e57a42def09838

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-7.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 926.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for arch-7.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f390ff489853525da11165c0574c822a48549d79b70f5e87142a751e3e92ebe8
MD5 822684fdea22e382bb79736e0b73e9a4
BLAKE2b-256 6a2671ae6d44e3e47c54480858b3d316787b49810c1df51e66bdab2662ee5b4c

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-7.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 886.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for arch-7.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 887214faa48347c0c8de31be2a07309c78f74b53a5c22e2c427c524b462d57a4
MD5 b20e3fd79945ce103716b58bf0a46218
BLAKE2b-256 e4b3eb6e5a2c0ab0bc132d4ae01be0551f665ee0a532440ae0b6b78ad33dab70

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c4795fdcb4cbd216e64a088e41dabcca39dc4a3403ea530e206bab116de0dea
MD5 720bb15df427568290055d6173ffdb73
BLAKE2b-256 52cc683f1cd3bd17499a14ee9151e2407f085cde0e115cdcdbffbb70060f1f54

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95145758002517b8332834b9989c5b371cfdf2281df5aaa275ddf424388a9e8d
MD5 e5a5587e941123a12dcf483174a407cd
BLAKE2b-256 5678118cdf79bc3161836518b2e211cd68cad82f316dc6b2b11ecc614d393eb1

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: arch-7.0.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 933.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for arch-7.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea816855bbbca8505bb5717447014895544bfcddfbb0de121c1b02ad2bb721a1
MD5 d94aceb316db48a000f2cd6a84623b0e
BLAKE2b-256 40b723190306de09bf8d9cd86dcf8191526d07c07200adb1039117ab98d1eeea

See more details on using hashes here.

File details

Details for the file arch-7.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-7.0.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 956.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for arch-7.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51a230870a4e9d22d14c1a8fb7a37ed27e7f2669f72d2f00a31faf0838079183
MD5 3685e6cdc9ff6bd70bcaab33aa44f722
BLAKE2b-256 d64711330b7cd468d1b2e18fbc6e2f7ae9238febe3f93ac393791f47fe98c021

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page