Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.9+)
  • NumPy (1.19+)
  • SciPy (1.5+)
  • Pandas (1.1+)
  • statsmodels (0.12+)
  • matplotlib (3+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.8 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1, supports 3.0.0b2+)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx-immaterial (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-6.2.0.tar.gz (3.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

arch-6.2.0-cp312-cp312-win_amd64.whl (922.2 kB view details)

Uploaded CPython 3.12Windows x86-64

arch-6.2.0-cp312-cp312-musllinux_1_1_x86_64.whl (983.6 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

arch-6.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (974.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

arch-6.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (944.7 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

arch-6.2.0-cp312-cp312-macosx_11_0_arm64.whl (929.5 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

arch-6.2.0-cp312-cp312-macosx_10_9_x86_64.whl (948.9 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

arch-6.2.0-cp311-cp311-win_amd64.whl (922.8 kB view details)

Uploaded CPython 3.11Windows x86-64

arch-6.2.0-cp311-cp311-musllinux_1_1_x86_64.whl (998.2 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

arch-6.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (981.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

arch-6.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (954.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

arch-6.2.0-cp311-cp311-macosx_11_0_arm64.whl (928.1 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

arch-6.2.0-cp311-cp311-macosx_10_9_x86_64.whl (951.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

arch-6.2.0-cp310-cp310-win_amd64.whl (922.8 kB view details)

Uploaded CPython 3.10Windows x86-64

arch-6.2.0-cp310-cp310-musllinux_1_1_x86_64.whl (998.2 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

arch-6.2.0-cp310-cp310-musllinux_1_1_aarch64.whl (960.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ARM64

arch-6.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (981.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

arch-6.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (954.5 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

arch-6.2.0-cp310-cp310-macosx_11_0_arm64.whl (927.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

arch-6.2.0-cp310-cp310-macosx_10_9_x86_64.whl (950.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

arch-6.2.0-cp39-cp39-win_amd64.whl (923.5 kB view details)

Uploaded CPython 3.9Windows x86-64

arch-6.2.0-cp39-cp39-win32.whl (884.4 kB view details)

Uploaded CPython 3.9Windows x86

arch-6.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (982.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

arch-6.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (955.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

arch-6.2.0-cp39-cp39-macosx_11_0_arm64.whl (928.2 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

arch-6.2.0-cp39-cp39-macosx_10_9_x86_64.whl (951.4 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file arch-6.2.0.tar.gz.

File metadata

  • Download URL: arch-6.2.0.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for arch-6.2.0.tar.gz
Algorithm Hash digest
SHA256 1b973418e5e672023748a164eada49e3b2374d20d126fae945fecbe75944fe0d
MD5 0d23b07c21b39ff455f46944be4afb01
BLAKE2b-256 7076df21ff20a4c0963b895a1fc90967da7aad0d3bc76207339b4c1809739dc0

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: arch-6.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 922.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for arch-6.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 32336d682be9d7effc865f442a268e64ad45b9b7e7158a6615c114475f303a4c
MD5 4820decc150bcdd31e9e6a5c9dfd585e
BLAKE2b-256 c3f771112968b11804f31c308af2e907e15594057873c7ab8c3dcbe5eb3be3e4

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 499a80160a3f0161d5d1432a76ffbf704e9855dbcc969b93255f753da73046c7
MD5 9319007275f54d2abccaff7c7b5ee9cc
BLAKE2b-256 54ec2988d550cb21e320c703519aa7be7f74153d5437ed2fb371fcff16bee6d0

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6a82f098e37a17b301444e63e4fc07db353d2662b0455477f72efaae828b9af
MD5 5f88d3ab85c6601050ee6e1bc26c61f3
BLAKE2b-256 9f3fe036baaa3f11c41d10bb667b7933378bd902bcdcb7d55c77f1315f27f3b2

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fcc32d0e5e2a777b5a004aedebb63b9be15952608d5d4d9fbd3bf31b1012b70c
MD5 f79ada772c1ea3976530fe7aff2e8f8d
BLAKE2b-256 07a7a06ee20e689ed6f840a92c6faa88adc1f0e5c525d6021535b420d7ba3cdf

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 897c78db14587ca775a1ea60b83c30da9808725b05b8dfcd09451ee74a643cee
MD5 f30c0cdefd0feca4437139b693b2d730
BLAKE2b-256 aa02139fdae73790142d65880fc862d7936790469fd55042f5220b386aa33c94

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2af8066e252a3f33bf429c093b204e7943ab54d856875ec4c9cd20feddfc159b
MD5 9ac19b0c9171703a070ca9e63808d0cf
BLAKE2b-256 1b859c251694f29ccccb2a9331687ab6b9a3458503ab28cc8f3f894f7a5a49ac

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: arch-6.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 922.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for arch-6.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 39c42f734b31decc852ad8cbbe43631b0a4ccb6c9312add442edd97832a1b50c
MD5 d9bd653677616eb84eca428598f41a76
BLAKE2b-256 d3e7e2d21cd3374abfffeae80e23fb164ba35515e2b63a5d1a545a23f71ac343

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d4102d6f276348fe7838652153949bf0b5f305f3d0c797d2e740fa593e419875
MD5 2dff983929acde00477134307ea95f22
BLAKE2b-256 df48fe24b29bf31319ff58167fb5750c3a7eb16b07ccdb4c39f46986aea06c6b

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab3b6867da6fd2b26d81eaaac04f67ea82e3e6c1d8626f13adc9ce0d373ae19d
MD5 b33c9e5ff7b11cfee4ce6a0a9e0d8c62
BLAKE2b-256 ba04c93fe405d47b69fef4a9b149018d7a8eb014ead215b367d238b160ad10db

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 215ddd5a3c9848c082e4cf98f7934d4d81dfebbb1e3d5a604041588e44c814ea
MD5 389c5d9069da23353344807736bd6770
BLAKE2b-256 7acd70ad046cc085bc0427979903e07a16696d65b54e43221704357081222e1b

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d035cc59ed4561c20d12185ac2c3a2675d27f6d535aace1666880776a72a291
MD5 ee33bdd79b9291172ba46406d1a0753b
BLAKE2b-256 db989e726ee548238f88a22ee6214ee14053477fb1613672a73412d44d1f428c

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c070ec407f45410f6fc824b22f402f974e09abd0f856d556af6a7cc76ea8dfc4
MD5 ff1389dcbe7c2fb0592969c76cf7915d
BLAKE2b-256 f5dde8543abd518461f783ad5b8465199d4ce6b7fbc4aa1d36031c44fe4b356a

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-6.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 922.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for arch-6.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7df1009689335788fa66da4f0718cb4aa1099e1d1b38f93e5d4ee360ef5ad5b1
MD5 af5f4ddc30735e8dc5ce7407f08e155d
BLAKE2b-256 1d57a18c2d2a161756368a4159af6a987b972f6e1bfe9aceb01676ddeb5fe328

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e8032caa4bcd16406ad4736feeee7bdeab6777508e34c20b8adee85d7a68ef7a
MD5 a2da8a700b2ddbaa71b6198f62484323
BLAKE2b-256 25138a271ef2d767f596395a59f18dc22c2dcae19f5477b0519c2768e6a416e5

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 36851f8b14defb21af2c94741706d6f425be156987b13409d0edd01e9a3c3e01
MD5 554fd8f7c1e525f80bfdf31d5f95c5f5
BLAKE2b-256 f030476d4c282afd44200d8e69031892bfa3fae100739c914e79a2da2e73da21

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51a7a48b142bafca32df0e1bd768510eb66141b42ca07dfff667486310d2ff04
MD5 ea1ab0f6924667810d2353384a72fc46
BLAKE2b-256 f59f8912d7bed6f3c6459e5f07bf10affb1d92d05b96d0946707be935067d142

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6ff0cceba026d193d3e9224418b54d651d31162cb1bafdae2f7b6f93fd19364
MD5 3cd6a05c83ed8225f5514d25f3c21093
BLAKE2b-256 78efe684976db67caddfae4ee1b9abb0d482deff8f025d07795babf6241b2407

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f19d482a624a9d47b810cb8b1b7b75cdec04ce6ab82459f46b0271122f936bf
MD5 aa67c92633ea8aa6532ab6119d4abdfe
BLAKE2b-256 031a82e2c158fe9a953e0b1718c46571d255df5bd0c8936799ce8105ca61b298

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27c4548cdd0f91b4fc301dc40a04c751217db0c54180dad54a2c19952a7fac2c
MD5 dbd5da04939ce683986422518d49ec29
BLAKE2b-256 06c180951f62367b4b1e5915040286fbdab72a9795b941c8b3d932465077083c

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-6.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 923.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for arch-6.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3cbce34f0eedfd9a8533eef2a792dc90c1012d544ac477262de098bfd993c29b
MD5 6362d6e123b517d34b4ce00fd4f0189c
BLAKE2b-256 3eb6bb91fbeb44e088ba5d086398ade303f1349f64e3e862319e7bb6bf3d7d0d

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-6.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 884.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for arch-6.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cd31cfdfaa23bb1250c6a0d62199f6fee31e0e564e8f99a1753ad3f0bc8a6a90
MD5 8f81749726c896d9920503fa90c37aa5
BLAKE2b-256 0f24ab34b7e28a335a12f2c08a60b241e5a755fbda64c2a731a670e61d13759d

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3367fed66367af6b5090e1ded4186f019b84368b21f158736cde9e647647b78a
MD5 0f5b7d7924e83666f1ef3ff92f21485b
BLAKE2b-256 f4eb5d5095ef93ae355e200a2e54c06be953a565bdda1ab9bfbced62a76a6958

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a58a898dbc7c300feae7e5dd4ce935784d8d8aaca06dbff0a7f4f2f8f5053b0c
MD5 f85b09e849419575addbbfb75fa63814
BLAKE2b-256 9b82a08e81aae2054284b6515bf51fe2ef05973bafa947533a9076fcf34856b4

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: arch-6.2.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 928.2 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for arch-6.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 880ac06ef1cc2cc58c88f7019b157efcaf4e00bb44526838d5c0e503673c6257
MD5 9b8c3934d78e1a7532cddbeae23a4352
BLAKE2b-256 51821ed0854d51e3d80892b1843c190fce9a16174f20f8efdd463c8fcd78d547

See more details on using hashes here.

File details

Details for the file arch-6.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-6.2.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 951.4 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for arch-6.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ea22286b5a93716096dd4b7670963b2ede54abf24f6f2e939b3013584977ae3
MD5 e211ca7694aba8fb471ff39954c3bd15
BLAKE2b-256 153924cc9939623d1f13c29671d67cd751397eac0bbad19e9e8352a3547bed34

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page