Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Continuous Integration

Travis Build Status Appveyor Build Status

Documentation

Documentation Status

Coverage

Coverage Status codecov

Code Inspections

Code Quality: Python Total Alerts Codacy Badge codebeat badge

Citation

DOI

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Released documentation is hosted on read the docs. Current documentation from the master branch is hosted on my github pages.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard’s site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH

  • Improve docstrings where unclear or with typos

  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models

    • Constant mean

    • Heterogeneous Autoregression (HAR)

    • Autoregression (AR)

    • Zero mean

    • Models with and without exogenous regressors

  • Volatility models

    • ARCH

    • GARCH

    • TARCH

    • EGARCH

    • EWMA/RiskMetrics

  • Distributions

    • Normal

    • Student’s T

    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas.io.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller

  • Dickey-Fuller GLS

  • Phillips-Perron

  • KPSS

  • Zivot-Andrews

  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Bootstrap

  • Bootstraps

    • IID Bootstrap

    • Stationary Bootstrap

    • Circular Block Bootstrap

    • Moving Block Bootstrap

  • Methods

    • Confidence interval construction

    • Covariance estimation

    • Apply method to estimate model across bootstraps

    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from Statsmodels.

# Import data
import datetime as dt
import pandas as pd
import pandas.io.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper

  • Stepwise (StepM)

  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.5+)

  • NumPy (1.13+)

  • SciPy (0.19+)

  • Pandas (0.21+)

  • statsmodels (0.8+)

  • matplotlib (2.0+), optional

  • cached-property (1.5.1+), optional

Optional Requirements

  • Numba (0.35+) will be used if available and when installed using the –no-binary option

  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don’t have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

This command should work whether you have a compiler installed or not. If you want to install with the --no-binary options, use

pip install arch --install-option="--no-binary"

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

--install-option="--no-binary" can be used to disable compilation of the extensions.

Anaconda

conda users can install from my channel,

conda install arch -c bashtage

Windows

Building extension using the community edition of Visual Studio is well supported for Python 3.5+. Building on other combinations of Python/Windows is more difficult and is not necessary when Numba is installed since just-in-time compiled code (Numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.24+, if not using –no-binary)

  • py.test (For tests)

  • sphinx (to build docs)

  • sphinx_material (to build docs)

  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes:

  1. If Cython is not installed, the package will be installed as-if --no-binary was used.

  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-4.11.tar.gz (789.1 kB view details)

Uploaded Source

Built Distributions

arch-4.11-cp38-cp38-win_amd64.whl (684.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

arch-4.11-cp38-cp38-win32.whl (656.0 kB view details)

Uploaded CPython 3.8 Windows x86

arch-4.11-cp38-cp38-manylinux1_x86_64.whl (709.4 kB view details)

Uploaded CPython 3.8

arch-4.11-cp38-cp38-manylinux1_i686.whl (685.7 kB view details)

Uploaded CPython 3.8

arch-4.11-cp38-cp38-macosx_10_9_x86_64.whl (694.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

arch-4.11-cp37-cp37m-win_amd64.whl (681.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

arch-4.11-cp37-cp37m-win32.whl (652.8 kB view details)

Uploaded CPython 3.7m Windows x86

arch-4.11-cp37-cp37m-manylinux1_x86_64.whl (712.0 kB view details)

Uploaded CPython 3.7m

arch-4.11-cp37-cp37m-manylinux1_i686.whl (687.7 kB view details)

Uploaded CPython 3.7m

arch-4.11-cp37-cp37m-macosx_10_6_intel.whl (850.7 kB view details)

Uploaded CPython 3.7m macOS 10.6+ intel

arch-4.11-cp36-cp36m-win_amd64.whl (681.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

arch-4.11-cp36-cp36m-win32.whl (652.7 kB view details)

Uploaded CPython 3.6m Windows x86

arch-4.11-cp36-cp36m-manylinux1_x86_64.whl (711.9 kB view details)

Uploaded CPython 3.6m

arch-4.11-cp36-cp36m-manylinux1_i686.whl (687.3 kB view details)

Uploaded CPython 3.6m

arch-4.11-cp36-cp36m-macosx_10_6_intel.whl (695.4 kB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

arch-4.11-cp35-cp35m-win_amd64.whl (679.5 kB view details)

Uploaded CPython 3.5m Windows x86-64

arch-4.11-cp35-cp35m-win32.whl (651.3 kB view details)

Uploaded CPython 3.5m Windows x86

arch-4.11-cp35-cp35m-manylinux1_x86_64.whl (709.9 kB view details)

Uploaded CPython 3.5m

arch-4.11-cp35-cp35m-manylinux1_i686.whl (686.1 kB view details)

Uploaded CPython 3.5m

arch-4.11-cp35-cp35m-macosx_10_6_intel.whl (691.8 kB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

File details

Details for the file arch-4.11.tar.gz.

File metadata

  • Download URL: arch-4.11.tar.gz
  • Upload date:
  • Size: 789.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for arch-4.11.tar.gz
Algorithm Hash digest
SHA256 a3d5cd9086e7c44638286fbe46a4688a3668ab79400a1712c3ce43490be0c3bb
MD5 c0e70ee0fc5dfb6aea38a8d4ee4791af
BLAKE2b-256 3428807731d5fd2512ec79401fbbaa84d9dcb76edbeb8ce36a5717375d6ee452

See more details on using hashes here.

File details

Details for the file arch-4.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: arch-4.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 684.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.0

File hashes

Hashes for arch-4.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e2b8618c6596d059fa64fba51fa4a2f47ab0746bf8e8122a7f737f1e1bb7553c
MD5 05974a97d40884d71e881d56dd5dfdbe
BLAKE2b-256 39030aceb440972f7b06c8279b30f8873db68b4e5d75c84dfd0037b94a7e6257

See more details on using hashes here.

File details

Details for the file arch-4.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: arch-4.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 656.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.0

File hashes

Hashes for arch-4.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6d2d77ce9c20e1c75f7ff481ff8e277e3afa01885a52abe158e7041ff471e381
MD5 6b5a9d2f9cefa60cfad403b2226f1dc6
BLAKE2b-256 9d64ddf82d95cb7d67ec75101409b1057bc6dd76fb7bcf79d19f70b76f1b734f

See more details on using hashes here.

File details

Details for the file arch-4.11-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-4.11-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 709.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e5b3b510946ec28654787e0a2523c284c6d940fd7e3bb161d2c586dd07a48065
MD5 a099d3f0df391fed6111bcdcb2de0273
BLAKE2b-256 9f71e3e87c9aab0437f33703ed6fd10dcdba16ba823e7a303e5dd1bd58b0dfac

See more details on using hashes here.

File details

Details for the file arch-4.11-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: arch-4.11-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 685.7 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.39.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4d9bd1651a23f6858214c9e68b08ab3ef8cc215196622321c07605e05f9419bc
MD5 4b3a6f88ecceac121873cd99e5f9b5f4
BLAKE2b-256 0b02c69f0b5bbfc960f26085a655c444976bc7502de9c585f009b81693259e23

See more details on using hashes here.

File details

Details for the file arch-4.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-4.11-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 694.8 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.39.0 CPython/3.6.8

File hashes

Hashes for arch-4.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e6c1c4ecbf601cf2475bc0e053846c8ef25086db6fc99d078c8d57f0928b0bab
MD5 018d51a904d9d5a90e00b64bd926962a
BLAKE2b-256 25c8757f7b08c0983adee74ed81d9e2214d50711e7f6a648c128600e294d0a92

See more details on using hashes here.

File details

Details for the file arch-4.11-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: arch-4.11-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 681.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for arch-4.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a1ad4689f4134e3402f87a91fa8d5db06b48805d4920500ffcb340f375b03191
MD5 0818ed677d4b0ac5b74369f40e2281da
BLAKE2b-256 717c533888af6c22f1e76a7aa7bc7f1732ce11ba6200a3996412dfcb2a192779

See more details on using hashes here.

File details

Details for the file arch-4.11-cp37-cp37m-win32.whl.

File metadata

  • Download URL: arch-4.11-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 652.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for arch-4.11-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cef2ba6a17b3228590d3af216f259863d83f9573d0ac59fad0e20ee35815e943
MD5 23492b34bb84fa31660cd65d24c63970
BLAKE2b-256 a4b59fba3dd4335e25c401fc5f9388a73d8e5da2b031c3c52df03e3dae8cb210

See more details on using hashes here.

File details

Details for the file arch-4.11-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-4.11-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 712.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 236e70b0021dfdc538b9b636fef1c2a5e4d370877f5af2bb318fe1a6bfd01596
MD5 3d211dbabd339bb87b0340601d0d1837
BLAKE2b-256 cc63b389a75d1612c4b17511debad78dc4f2bad0cd47890b50c185611c486056

See more details on using hashes here.

File details

Details for the file arch-4.11-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: arch-4.11-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 687.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.39.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1d74dd0cddb0e5ce6fb9a64e64c6b323ff4ed86bd4907099666aec39f1646f20
MD5 492ffae43c96c84b7acd2273abfa90e4
BLAKE2b-256 8484c1f175bddba85333db7a7ae4a2df526b4b6f599f3269a1bc256b37b6771b

See more details on using hashes here.

File details

Details for the file arch-4.11-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: arch-4.11-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 850.7 kB
  • Tags: CPython 3.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.39.0 CPython/3.6.8

File hashes

Hashes for arch-4.11-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 2cd9ae94ccffa0015a39ae61ee0282cbc4fabfe786ab78d918efdcd9adbca45d
MD5 63e402ffd2d2cd1fea3b18bdb4e4631c
BLAKE2b-256 19fbc0dbb474070358054e99578116c435d0e24958facee74a4bb9cdd38caa9f

See more details on using hashes here.

File details

Details for the file arch-4.11-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: arch-4.11-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 681.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.9

File hashes

Hashes for arch-4.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d1a74cf63068dfa7bf2fc18528bb532b36e82e4f6b36cc586ea303ae6e1aaa71
MD5 583deb25ff277193189c483c8f5a4111
BLAKE2b-256 0fea6d07c26f5ee522f6777557d3d3e9a55e52642b667edd1fd5cfadfee3c1c4

See more details on using hashes here.

File details

Details for the file arch-4.11-cp36-cp36m-win32.whl.

File metadata

  • Download URL: arch-4.11-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 652.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.9

File hashes

Hashes for arch-4.11-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ad0627d4f9441b2b76bbc88cf66305bc46ce69fc372436302395f8cc752a2c78
MD5 79204ca453133f866ac89a5ec7d1bdc6
BLAKE2b-256 4cf9a9b399f5bd386a66d4d7c5a1a69ef0c1027bbccdd44bd82d6d96b7b58ee6

See more details on using hashes here.

File details

Details for the file arch-4.11-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-4.11-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 711.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cdc2073d4a003f707ffade64c4686eff413b5d636041ff6f54270d5ee4cc7356
MD5 81f77be1450adaae2a1e21221c384ae0
BLAKE2b-256 f59e7628ae53df0494a08d256dcdccc2519aa058c7c7ccb0fc6ca4a380b0bc86

See more details on using hashes here.

File details

Details for the file arch-4.11-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: arch-4.11-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 687.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e7c1289b4c6bbcda371737055d14fce8f495446b53fec22609144290b3c2fbf8
MD5 0e0c469229367c9988d2a54f1e3657a3
BLAKE2b-256 ca23fbc07c342abcc070dca40bc5d190662b102096628564b1bbf70398393629

See more details on using hashes here.

File details

Details for the file arch-4.11-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: arch-4.11-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 695.4 kB
  • Tags: CPython 3.6m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.39.0 CPython/3.6.8

File hashes

Hashes for arch-4.11-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 27d7018e660e6c7fd11bff8e7dbe50871beea62e17ec88563022b3f5b3fc00ba
MD5 227742861076180fe57c9d7ed618a9f1
BLAKE2b-256 ac7329a237fb30c9eda3fbf32794dfad64dd5c34ded811dfc3489fee20744f73

See more details on using hashes here.

File details

Details for the file arch-4.11-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: arch-4.11-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 679.5 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.5.6

File hashes

Hashes for arch-4.11-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 a218a18d0952c1a8696ee7022a2d428a8c2474f3c42ff4a8daefec881742e18b
MD5 74daa626d7455bc0644855d6cd5ceeb3
BLAKE2b-256 b945ef4eee1dca641e2e056fa0478263037122ae766ef82dd0accb6fe191f726

See more details on using hashes here.

File details

Details for the file arch-4.11-cp35-cp35m-win32.whl.

File metadata

  • Download URL: arch-4.11-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 651.3 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.5.6

File hashes

Hashes for arch-4.11-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 42bbd8abf5cda7246126482a8410b62fd30d6a545a4f3c1a3e8126222c5c2a7e
MD5 bacd3af42cecbb7b3bbfa6f11ece61db
BLAKE2b-256 026bfcf9e379e6690056a3f855cf581a06da852b3d091fa1d9282b8864933227

See more details on using hashes here.

File details

Details for the file arch-4.11-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-4.11-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 709.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9172d13552c5a856f12772863936430aae2b14bf90e96e8dab03eaf0508bfe74
MD5 37fd3aaac4db2eb44d7999ca58229a45
BLAKE2b-256 3cb7e8bcd0ad64a537203cd05d5784144ad58361ecac09f983de8beecfb2e1d7

See more details on using hashes here.

File details

Details for the file arch-4.11-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: arch-4.11-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 686.1 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for arch-4.11-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0393c047f59edc2def62192ab631ce3b8a981804ad0cfd67c3761b789167d158
MD5 46b4a7b5a50b49b0f539c3a15a116804
BLAKE2b-256 1756b2686f763c5e8ab5790b3bfd9adeef2e999c12bd490ea5fd8da41bdcac2b

See more details on using hashes here.

File details

Details for the file arch-4.11-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: arch-4.11-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 691.8 kB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.39.0 CPython/3.6.8

File hashes

Hashes for arch-4.11-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 cb58ad11d86e5838948a0ae72645d06574fe88971f0bd445e592b63fd84540ed
MD5 fc3dc4a877ba9be72f0e1f866ba7fcf4
BLAKE2b-256 97f06e78d0dc18c7355c7ac0142ba79bdf2e172d8298db281d4d7cf38940f02f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page