Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Code Quality: Python
Total Alerts
Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.7+)
  • NumPy (1.17+)
  • SciPy (1.3+)
  • Pandas (1.0+)
  • statsmodels (0.11+)
  • matplotlib (3+), optional
  • property-cached (1.6.4+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.7 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx_material (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-5.2.0.tar.gz (3.1 MB view details)

Uploaded Source

Built Distributions

arch-5.2.0-cp310-cp310-win_amd64.whl (844.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

arch-5.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (906.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

arch-5.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (884.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

arch-5.2.0-cp310-cp310-macosx_11_0_arm64.whl (850.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

arch-5.2.0-cp310-cp310-macosx_10_9_x86_64.whl (878.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

arch-5.2.0-cp39-cp39-win_amd64.whl (844.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

arch-5.2.0-cp39-cp39-win32.whl (813.4 kB view details)

Uploaded CPython 3.9 Windows x86

arch-5.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (907.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

arch-5.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (884.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

arch-5.2.0-cp39-cp39-macosx_11_0_arm64.whl (850.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

arch-5.2.0-cp39-cp39-macosx_10_9_x86_64.whl (877.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

arch-5.2.0-cp38-cp38-win_amd64.whl (844.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

arch-5.2.0-cp38-cp38-win32.whl (813.7 kB view details)

Uploaded CPython 3.8 Windows x86

arch-5.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (906.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

arch-5.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (883.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

arch-5.2.0-cp38-cp38-macosx_11_0_arm64.whl (847.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

arch-5.2.0-cp38-cp38-macosx_10_9_x86_64.whl (874.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

arch-5.2.0-cp37-cp37m-win_amd64.whl (841.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

arch-5.2.0-cp37-cp37m-win32.whl (809.9 kB view details)

Uploaded CPython 3.7m Windows x86

arch-5.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (902.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

arch-5.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (882.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

arch-5.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (874.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file arch-5.2.0.tar.gz.

File metadata

  • Download URL: arch-5.2.0.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.27.1 setuptools/58.0.4 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.8.12

File hashes

Hashes for arch-5.2.0.tar.gz
Algorithm Hash digest
SHA256 2dfd1b5f62b72625b8ed430ae0a3e011bbe24b9147c0164bc9e48bf5202dc6ab
MD5 7352b73714d8ab1614a31ae0b94cf0da
BLAKE2b-256 052bf66a948f1c54e9663519bc8cfd2229704bd96dc12dbe67692c77386f60b9

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-5.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 844.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 747d7a76ce9c71dead86211c33be1607ecc89a34e1367a279cd62ce80066724f
MD5 3a925cd67216867dafd0772bc717c45e
BLAKE2b-256 aafd90093c5f8b2daacc49fcc5a07f7f7aff093da33e93b4639d053235912366

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 906.7 kB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d68d28c1557b098bce918b2e51c11708789ff6089e92374cf2b2e5b88392a80
MD5 6b084ebb1349d0cfdda4b07f411903ac
BLAKE2b-256 0d2b8e225b20dcf24ae4951ce0aa89e65d61680956d2b8726e6d907c4a7734b6

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: arch-5.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 884.1 kB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 462a53f360d153567005509976b5662e928f3b60d5d1b11735e1d36d837e37b7
MD5 1428e19b3bd566d727a65985e3c17daa
BLAKE2b-256 fff3c0f888420258b2bddc3101504f628410387fcd7b25625997cfe07a29af5e

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: arch-5.2.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 850.6 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for arch-5.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98cb7980e6b6770d1e424fbf8647e63b1cf5d629f42e67c6fc041c5221309a52
MD5 21f03d3cda11b50f96ca143b1b15f795
BLAKE2b-256 23f93e795e40c40697632ec785f49d355ebcdcb8bc00f2cfc2ff38870e178e9f

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 878.2 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for arch-5.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ee91f1acb4a57a8252d0dfbf0f32c32affda00bcbefda16abd8c8d8eb3f3376
MD5 80d5fca768a276f67a884ead0207c209
BLAKE2b-256 126b96087f802177de41ab802ea4a5336f2930b8aaf95ab300de8f9999d0c8c0

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-5.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 844.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e5bb8c72af1a5e90c890d01d01ed8c2a00bfd81c944592b6374eff61df9ede85
MD5 4b294816e1c596df8cfdb8dbad7fca1d
BLAKE2b-256 30ed315681af2924b01910bbadbc80835415d82187c8734ef44846bc48b43121

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-5.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 813.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e994e119b5466d63e47a61d6324ae460777b8d5519ee6095f98b480dd633cbb7
MD5 7c9a59f68abfa8932dc707a8a7d867ff
BLAKE2b-256 099202025de026c31e62128209d8bdbffb156ea885279f96270843756889d0c4

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 907.0 kB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c9512f097b4db724d56f5a21ef23fd779162bda25c2d87f592d765b4cfd5fef
MD5 1ad5b9872443248afc0687c5a39acfdf
BLAKE2b-256 74a28e3dcaefa5c4e7df5760b8723e103225600f4ebc4d88facf0fc3d839c425

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: arch-5.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 884.6 kB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5ab0b59cfd019687d029c5cd9c2b09179b2ac5135fd0ed46e3ae81fcbd705f6f
MD5 28ddeaabb8483fe0e9e3c3fc865f50d0
BLAKE2b-256 18bc6d27b46927025c39ecf8f1e13cf662f4c2602bdc859d834a7ad059994c93

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: arch-5.2.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 850.1 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for arch-5.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b9881d99e26a669f7dc9eec709567fa029518b8cdb52bd6c30c10a50a6e4b20
MD5 e69a1aa43776d1f359f4f1acc303276d
BLAKE2b-256 d825b2edf9cc42a7cfbd09f44badf55f06c33743c7b7935ea891c4545423532d

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 877.4 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for arch-5.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2bd9a110023193095c81586840b188b6144aa5e70d2794f8e57223f7a468c9a
MD5 43a755f78525f3094ffc8ea6483a8351
BLAKE2b-256 de18486d481daae2562b42995481d8f51fea0f89aa3ba98c87c0d2c99f25121b

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: arch-5.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 844.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 202b94282048caf4dcd72d8273ca4c03c9b02c7f5bc759b1be292ff8933b5f22
MD5 bde0c550735932f2f7920ddce9ac12aa
BLAKE2b-256 c313c09e3b23284aaba82f3a56dc29b9ef18b3dd1530c0fc72699291ca59ca2e

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: arch-5.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 813.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 decbd0c2c66c6244c50bbca2d6f3b321294ec616b3764d9e8bbfd6853f5f6c5c
MD5 e3e47cf1a13a284564762c43257047e2
BLAKE2b-256 45682de38fdf17e2e757ce2d566d90901eb61a839f9ede39f595bc80a206221b

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 906.1 kB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be21cc3ffbcc31f2fccd3ea76ff480929e0e5a21434f0dbf8544fc6ba440ba7d
MD5 24abfd09a226f1a430895055c262d4e1
BLAKE2b-256 c0e7b68537919cc680eb3e5fcb3092fce5ce01c3d2253ffce86c97f54464c4e3

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: arch-5.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 883.9 kB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 331cfa3e58e5f5917604307638418f5278a64d3654cae175bfb4401533db0752
MD5 fbe55cd07caaabd0151c4789c41863ab
BLAKE2b-256 3dd1aec43773f2a64c22baf312f5817d8950463dd10bd2eb3a2a354ca5f5a09d

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: arch-5.2.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 847.5 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for arch-5.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a9763a2387157f091161ed5415965c0c3aca68c6df730a00951a4d62e1a49a9
MD5 d2be9d12a93c6d6cd6b853fb974008ad
BLAKE2b-256 99c4baca397221cdcf9ba5c9bc5a942fec8f79a8e82f131daab39e49636b0cf3

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 874.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for arch-5.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 62063cb61d0fbcdbd5245b0892558501fcf1ad420acbcd94f3a96443ee0c95c8
MD5 743b66cd01d962abda18d969a5b20a0d
BLAKE2b-256 278dce1f9fefa3ce8bf28a39cb19e5548ab321acfa04e239ac7aa091099c2625

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: arch-5.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 841.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 06fab3d54c20975a79250d600733d737804f7ec7a888836d38d2128ee40cdc25
MD5 81cc64687f0beca038b0a0f2ea4e7972
BLAKE2b-256 39728e2f8d9b52505e9c2a0414bc978a56de12398d0a1c0ec4b2edd8483f4acc

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: arch-5.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 809.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dc71da6266bb43e1e1b2e5e05901def9bacab275634706875c95b1fefa6d0a9a
MD5 0032b0be9ebe741a2b294f2f1e6ea4f7
BLAKE2b-256 6f6dc0d569c7812cc3ee4cfd7575fb3889c515ad2d3ac7a3d230b749c858520e

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 902.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df5eccc7c856b24f5f5e6a1483985395c11b885c61592572ed4270da849fe3dc
MD5 48d5d8a3c0145c2b6f646d5010f2f6b4
BLAKE2b-256 45d531bfddfca04605d50723cc49dfb02d1b08d02d5a70ab48b046a7caad20c1

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: arch-5.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 882.4 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for arch-5.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a88fe23045febd1ca4dc04ce889b86af12ac4a50a20cb3937384fe58abc4de5
MD5 27fe6f3689f38f35bd520c4ea18fa62c
BLAKE2b-256 23ddb991ba78de13a05b21c24d6aa5ed8e6f303134239aae3befd483fef8b66e

See more details on using hashes here.

File details

Details for the file arch-5.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 874.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.3

File hashes

Hashes for arch-5.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ff2713842e5957e78fd80ad70459c6673bab1b28768e09c6ca3ea01ec2f1330
MD5 031462d10ef0bac67864b4f5183489fd
BLAKE2b-256 51c7705aebf97c714f0e82185901bbb81b7d9fe9b0f70b24bf82214db51ef5d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page