Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Coverage codecov
Code Quality Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.9+)
  • NumPy (1.19+)
  • SciPy (1.5+)
  • Pandas (1.1+)
  • statsmodels (0.12+)
  • matplotlib (3+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.8 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1, supports 3.0.0b2+)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx-immaterial (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-7.2.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

arch-7.2.0-cp313-cp313-win_amd64.whl (925.2 kB view details)

Uploaded CPython 3.13 Windows x86-64

arch-7.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (985.5 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

arch-7.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (977.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

arch-7.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (947.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

arch-7.2.0-cp313-cp313-macosx_11_0_arm64.whl (925.2 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

arch-7.2.0-cp313-cp313-macosx_10_13_x86_64.whl (945.8 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

arch-7.2.0-cp312-cp312-win_amd64.whl (926.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

arch-7.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (986.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

arch-7.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (978.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

arch-7.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (948.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

arch-7.2.0-cp312-cp312-macosx_11_0_arm64.whl (927.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

arch-7.2.0-cp312-cp312-macosx_10_13_x86_64.whl (948.9 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

arch-7.2.0-cp311-cp311-win_amd64.whl (927.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

arch-7.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (998.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

arch-7.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (985.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

arch-7.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (957.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

arch-7.2.0-cp311-cp311-macosx_11_0_arm64.whl (925.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

arch-7.2.0-cp311-cp311-macosx_10_9_x86_64.whl (946.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

arch-7.2.0-cp310-cp310-win_amd64.whl (927.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

arch-7.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (998.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

arch-7.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (985.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

arch-7.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (958.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

arch-7.2.0-cp310-cp310-macosx_11_0_arm64.whl (924.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

arch-7.2.0-cp310-cp310-macosx_10_9_x86_64.whl (945.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

arch-7.2.0-cp39-cp39-win_amd64.whl (928.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

arch-7.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (986.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

arch-7.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (959.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

arch-7.2.0-cp39-cp39-macosx_11_0_arm64.whl (925.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

arch-7.2.0-cp39-cp39-macosx_10_9_x86_64.whl (946.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file arch-7.2.0.tar.gz.

File metadata

  • Download URL: arch-7.2.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for arch-7.2.0.tar.gz
Algorithm Hash digest
SHA256 2c6128174e0e3ab4c2cad527e78eb3fbce4a4f8ba53580bdf0d02566eb2e953d
MD5 4915eda38f750e450fff9156ae80da10
BLAKE2b-256 a5256d334de3338153d65a0f4939349a89c597f5e9c31dbbc4e3206e18f5295d

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: arch-7.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 925.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for arch-7.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7ea8a89e1f63222f28f49925e8d30886478161124d862dcc840e66e6bb986301
MD5 320cf9d04383b224d0eb16de4555d6db
BLAKE2b-256 cf057e118efd6a1e17274bd4b694d7a9ca2fa9e7ded7a0fc695924541a4882ba

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5d45fb7ddc8376e7e2b4037297f526da1d1dd75190cab9add01e1db7194b51ca
MD5 367b154dfdb6e1e7bae1d7bd566214e7
BLAKE2b-256 21243c12453b7568c9b3e7b8de0e3b4e650d13c99e34ae6ed49e5a804963476e

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4523f9357de7c8f064610cda669d3da411d879ca3db7fff5851ee3f9a55d9d6
MD5 359294037ab4defb527c4e931b171da5
BLAKE2b-256 42e33f6184896072d070e8dcd9af04a2d8db8604432a89f080fa1f3f6341e7c1

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16e54bb679fbab801f788ba8a9ed93929e453b0f471501bbad8a674290ddeab0
MD5 a1e397a53b5b993b624a5fa51e52f2df
BLAKE2b-256 abb57630472342c0744b7416754f8ec6e45ece76fa822aa16dd8ae7691a40447

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e5251808057282b614bb588c704106e9ea3fcef11dda142d05dbf5f6a95745f6
MD5 4fa3604572948253b85737c898e755a3
BLAKE2b-256 b6dfef96af416f665623cf6af3a8906612b4733040132b51061533e33ea666c2

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2a0c9a02afd470b3c7c0a507a6466ace7bf314bf0977818c58dff1d7a0b165cc
MD5 a94d172a9d13f652b510398224b63fa8
BLAKE2b-256 429c76bf4826de4de523027dff4c3c0978efc5ae891e26644c4d1292af7e2f3e

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: arch-7.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 926.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for arch-7.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f374d113f44e5f0a7cf7a4a5b08c2ebc603990750fa24f472a00ede96d8cf02e
MD5 1a58ac9fc60ce9ca2aa323838e239d65
BLAKE2b-256 fc6783b4ff85c61ec545366d654823acdfcfffa180f0f0c645cbf7ea97e2ada9

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a70170660dc0e97c980f4f5e75e5e5169f5d3c9a432b686e92994f0e5c376d38
MD5 2bfcfc8ff96ca2ffbfcf0123cc3a35e3
BLAKE2b-256 e9b441071f125746396cf66da4f051ce86033fba53ef8df2496e6b453063a751

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c8939ebc83dea0cf22423669b4f523cc47a7f3f5d7af9d7af179aaf21c566f3
MD5 33334edf077448ddc80bb45f7591ac50
BLAKE2b-256 090514d9b2773fea75d87e9e55a85f531ed615538eddf18a4b3cad4e34e2f12d

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15d2069ff223bfcd9851e664da47103c7144a00f21a9de91414f233f981c048a
MD5 1c2f2f7ecb85d01739007a1c7c5a3984
BLAKE2b-256 9df57017b443d22c63390a0c8f739314ca3e3b04672518470c6020953ec481e2

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2013c7be5a24aefd08b1eb88fb9dec0e05a8cea515669e384249b76bf1357768
MD5 810f0f928a48cba5a8bcdf21bd6e1f94
BLAKE2b-256 6ed5dccef476d4f357ab26fd7b464ef8aa9333ca28ed763afc52bbc8868de543

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cb08153a2e38300f5244b9c31a179c8dff6c0c79539f2995c428c09a8b24121a
MD5 e61bfe4f3a78ae48f4d95d26b5337779
BLAKE2b-256 64bff47b7698717b4e8445a7fd163ca796bc636bb900d42d113756f4e4d9949d

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: arch-7.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 927.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for arch-7.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 74bf2768be83c171066c397640be5d937baf7395c8809f1d5fc843563cf47bbf
MD5 380ce20492aa2d8aa39e6b0479a121d6
BLAKE2b-256 6ba720b3f209b55a862f6ff0ec508d158a12c6e7eb9b62cfa839822eafcc0214

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cc8abccb095d285c3e049c015ed8f2859196eb0e53f83ea8ec76e16ec114b4e8
MD5 ce8a578c6649829163f0c871c8955055
BLAKE2b-256 12b6d9157272f9244fe682a18d8563d9bfc0364750fabfb5db113303f08f5735

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dde9c7cd52370b53cc1f7df499a855dc25a83c1e69f64155210d16d436c1bc76
MD5 febdeea8a54033e424f89059e6158537
BLAKE2b-256 303836ff10413e384eba5505c6ab247c2cd03f1681c73515d672cad5321f0a7f

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3473ef75eedb0625fa396bc7d8a1d099eed9d462710268d1c1c11e4d6dd3891b
MD5 f5bd9d67c898af56270876c542d3f9ac
BLAKE2b-256 f7868190a477b22d0b113d9975a476313494d3e29504ca451e78bded04b2d3aa

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7363070f4733db29abeec305564b591f6075ed155ba210ebc45355ae8701f352
MD5 73885dd7ec62033ae70b6fd81a9a9c8a
BLAKE2b-256 29fe1197be03e2207173a40998e47b98854c824c37b3b8f806ba3aeb90863838

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b4c46704a811438d37f84b7e82b933de3666d8a482c062285e402f7b8411be7
MD5 b3c0ca5968378b738de8a3592bf47d0d
BLAKE2b-256 86bb0524096ad65987ecd77942416bb21af1fda50f204555a71a60108b543cc2

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-7.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 927.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for arch-7.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d817acc22ee44f7bb227a88c494d12e74ad27ff0d045b59be36054b13d78c8a0
MD5 328c0cd41a2d15da05e83d997e78a5c2
BLAKE2b-256 1167ccbf9a847c748aba446f16e1e03b09074392f72679342cabebd711205165

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8f8aa11ab6e276d9e47fad412837eba97963b5b22a7686f04913a2f59a053655
MD5 fa8c06416b1919fc83fb7fce91a66690
BLAKE2b-256 bf1c49016ebacaa42219a507c17d73bf1f9cf0d7cb968526b165b405ac136887

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63128bf500d67688532f3192bdb3fb67aa1231cb7ed56cbb5d4fce4c83db225e
MD5 a27d810ee879115cdc07790f9b139eff
BLAKE2b-256 419df0609376159a5c6e3a56fb85c54109d69c47a56edfee7f4459b01ea00bac

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0559cfe6da6e5c8627fcb84868de2aed14554ab155d717147a6d194ae3facd96
MD5 581d6f970d3d74ec2332eb9bdf8bd3dc
BLAKE2b-256 efd26bcecb4fa28b5d50b5ba4b2c210b1b9b2b96b4f371ca6de286b436346819

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb3cb8bcf7f28e3a18d4e2b6cb661a8dd883af844277633ebe533ee1df2cc12a
MD5 163e07f0b11163343c8410e4fece8764
BLAKE2b-256 c2726b2906bd9d694d877ec09b9391701ce72abfba7aa535bf25bdbef02a394e

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae119847fae37bbbf7273b4aa1f709f49d4637497ab6a4d7e76417eb94cae4af
MD5 08bf9ea2bc9ac8b75a0717b7c347e77f
BLAKE2b-256 865b3fa0ae9ee78ec3ec13bdb7e03d304aebb703dfdc72c85984ec961a837e0a

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-7.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 928.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for arch-7.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d7f7d50c3122e58540c530c333b25f9c50317a32dc43dedfd105f07712c5d4ec
MD5 4043d9a04c87d307de09f163d2df2444
BLAKE2b-256 3978df6b78d686a0964bfd36dc4e82186aa9d6ca3bb33dd89fbb875bb2a9abbb

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24977b2969225bbe039f1816253b1c06b1a03ad64a904679e2a1762bac03c0e4
MD5 8a957b5c4dcc7af66c1cd19e51c0f712
BLAKE2b-256 bc0c9dd5f0af03f9eef8d077cd7743658f902015a078f2e2b44dac1c477de1f8

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8ffdfbfb6bf855fa9eb20b66ba328c1556790f2b9f37ced21c47c412f92541ae
MD5 4f448fc1f4374e04fea7b324955e609f
BLAKE2b-256 e813fcc5605611237b8df0931e699a2e8c213c40dc608520d56f78ec867825d4

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55eef0542a3fc1c2e7bd958bb924c712f1796ff7baa51d510f97a5437a294c79
MD5 1dff299f42c41ce103e6dc796418eaa6
BLAKE2b-256 f1bc7ef8bdf1e2e473ba8c0fa93ca9fa9ac2d119e47f0071c7c8fb5762761546

See more details on using hashes here.

File details

Details for the file arch-7.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-7.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c60e1fbaa4a286d7658ea577e0cbbd925b1ea33eb40cfc2cb770fb83c4c141c
MD5 0842f28434135befdea523a8afa5bd30
BLAKE2b-256 328a06361cafeaff904ecfc09cb5a57cd3b5e5be92db877eb60ccdc7a3016e5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page