This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

CONCISE

CONCISE (COnvolutional neural Network for CIS-regulatory Elements) is a model for predicting any quatitative outcome (say mRNA half-life) from cis-regulatory sequence using deep learning.

Features

  • Very simple API
  • Serializing the model to JSON - allows to analyze the results in any langugage of choice
  • Helper function for hyper-parameter random search
  • CONCISE uses TensorFlow at its core and is hence able of using GPU computing

Installation

After installing the following prerequisites:

  1. Python (3.4 or 3.5) with pip (see Python installation guide and pip documentation)
  2. TensorFlow python package (see TensorFlow installation guide or Installing Tensorflow on AWS GPU-instance)

install CONCISE using pip:

pip install concise

Getting Started

import pandas as pd
import concise

# read-in and prepare the data
dt = pd.read_csv("./data/pombe_half-life_UTR3.csv")

X_feat, X_seq, y, id_vec = concise.prepare_data(dt,
                                                features=["UTR3_length", "UTR5_length"],
                                                response="hlt",
                                                sequence="seq",
                                                id_column="ID",
                                                seq_align="end",
                                                trim_seq_len=500,
                                              )

######
# Train CONCISE
######

# initialize CONCISE
co = concise.Concise(motif_length = 9, n_motifs = 2,
                     init_motifs = ("TATTTAT", "TTAATGA"))

# train:
# - on a GPU if tensorflow is compiled with GPU support
# - on a CPU with 5 cores otherwise
co.train(X_feat[500:], X_seq[500:], y[500:], n_cores = 5)

# predict
co.predict(X_feat[:500], X_seq[:500])

# get fitted weights
co.get_weights()

# save/load from a file
co.save("./Concise.json")
co2 = Concise.load("./Concise.json")

######
# Train CONCISE in 5-fold cross-validation
######

# intialize
co3 = concise.Concise(motif_length = 9, n_motifs = 2,
                      init_motifs = ("TATTTAT", "TTAATGA"))

cocv = concise.ConciseCV(concise_object = co3)

# train
cocv.train(X_feat, X_seq, y, id_vec,
           n_folds=5, n_cores=3, train_global_model=True)

# out-of-fold prediction
cocv.get_CV_prediction()

# save/load from a file
cocv.save("./Concise.json")
cocv2 = ConciseCV.load("./Concise.json")

Where to go from here:

History

0.1.0 (2016-09-15)

  • First release on PyPI.

0.1.1 (2016-09-17)

  • Minor documentation changes
  • Renamed some internal variables

0.2.0 (2016-09-21)

  • Introduced new feature: regress_out_feat
  • Major renaming of variables for concistency

0.3.0 (2016-11-30)

  • Added L-BFGS optimizer in addition to Adam. Use optimizer=”lbfgs” in Concise()

0.3.5 (2016-11-30)

  • New function: best_kmers for motif efficient initialization
Release History

Release History

0.3.5

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
concise-0.3.5-py2.py3-none-any.whl (28.9 kB) Copy SHA256 Checksum SHA256 3.5 Wheel Nov 30, 2016
concise-0.3.5.tar.gz (735.5 kB) Copy SHA256 Checksum SHA256 Source Nov 30, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting