CONCISE (COnvolutional Neural for CIS-regulatory Elements)
Project description
<div align="center">
<img src="docs/img/concise_logo_text.jpg" alt="Concise logo" height="64" width="64">
</div>
# Concise: Keras extension for regulatory genomics
##
Concise (CONvolutional neural networks for CIS-regulatory Elements) is a Keras extension for regulatory genomics.
If allows you to:
1. pre-process sequence-related data (say convert a list of sequences into one-hot-encoded numpy arrays)
2. specify a keras model with additional utilites: concise provides custom `layers`, `initializers` and `regularizers` useful for regulatory genomics
3. tune the hyper-parameters (`hyopt`): concise provides convenience functions for working with `hyperopt` package.
4. interpret: concise layers contain visualization methods
5. share and re-use models: every concise component (layer, initializer, regularizer, loss) is fully compatible with keras:
- saving, loading and reusing the models works out-of-the-box
<!-- TODO - include image of concise -->
## Installation
Concise is available for python versions greater than 3.4 and can be installed from source using pip:<!-- PyPI using `pip`: -->
```sh
git clone https://github.com/gagneurlab/concise
pip install --process-dependency-links concise/
```
`--process-dependency-links` and cloning the source is required in order to properly install the following github packages: [deeplift](https://github.com/kundajelab/deeplift) and [simdna](https://github.com/kundajelab/simdna/tarball/0.2#egg=simdna-0.2). PyPI version is also available, but the github packages might not get installed properly:
```sh
pip install concise
```
<!-- Make sure your keras is installed properly and configured with the backend of choice. -->
## Documentation
- <https://i12g-gagneurweb.in.tum.de/public/docs/concise/>
<img src="docs/img/concise_logo_text.jpg" alt="Concise logo" height="64" width="64">
</div>
# Concise: Keras extension for regulatory genomics
##
Concise (CONvolutional neural networks for CIS-regulatory Elements) is a Keras extension for regulatory genomics.
If allows you to:
1. pre-process sequence-related data (say convert a list of sequences into one-hot-encoded numpy arrays)
2. specify a keras model with additional utilites: concise provides custom `layers`, `initializers` and `regularizers` useful for regulatory genomics
3. tune the hyper-parameters (`hyopt`): concise provides convenience functions for working with `hyperopt` package.
4. interpret: concise layers contain visualization methods
5. share and re-use models: every concise component (layer, initializer, regularizer, loss) is fully compatible with keras:
- saving, loading and reusing the models works out-of-the-box
<!-- TODO - include image of concise -->
## Installation
Concise is available for python versions greater than 3.4 and can be installed from source using pip:<!-- PyPI using `pip`: -->
```sh
git clone https://github.com/gagneurlab/concise
pip install --process-dependency-links concise/
```
`--process-dependency-links` and cloning the source is required in order to properly install the following github packages: [deeplift](https://github.com/kundajelab/deeplift) and [simdna](https://github.com/kundajelab/simdna/tarball/0.2#egg=simdna-0.2). PyPI version is also available, but the github packages might not get installed properly:
```sh
pip install concise
```
<!-- Make sure your keras is installed properly and configured with the backend of choice. -->
## Documentation
- <https://i12g-gagneurweb.in.tum.de/public/docs/concise/>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
concise-0.6.1.tar.gz
(8.0 MB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
concise-0.6.1-py2.py3-none-any.whl
(755.0 kB
view details)
File details
Details for the file concise-0.6.1.tar.gz.
File metadata
- Download URL: concise-0.6.1.tar.gz
- Upload date:
- Size: 8.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f42e03043346ef1735afba303b24015ef5ed708e2f19cbcde00118c8435bf831
|
|
| MD5 |
5b4442bd9c2e13445560e32c65f45746
|
|
| BLAKE2b-256 |
b4c25954b77af5dddc4d949671d9e1d8ca9655394ce91cfea2172e7ecec52572
|
File details
Details for the file concise-0.6.1-py2.py3-none-any.whl.
File metadata
- Download URL: concise-0.6.1-py2.py3-none-any.whl
- Upload date:
- Size: 755.0 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
41b6f3bf046f58c2035ca3296c45416592e81d0a5cbf54e30563c2a2178efac0
|
|
| MD5 |
acd73a8c2432c0d6f2458e812f5dd48e
|
|
| BLAKE2b-256 |
1b6943ce6be407968484f6206bf7449ee26f9e7a1a7b164fd4f3e3ec2fa31f44
|