Skip to main content

CONCISE (COnvolutional Neural for CIS-regulatory Elements) is a model for predicting PTR features like mRNA half-life from cis-regulatory elements using deep learning.

Project description

===============================
CONCISE
===============================


.. image:: https://img.shields.io/pypi/v/concise.svg
:target: https://pypi.python.org/pypi/concise

.. image:: https://img.shields.io/travis/Avsecz/concise.svg
:target: https://travis-ci.org/Avsecz/concise

.. image:: https://readthedocs.org/projects/concise-bio/badge/?version=latest
:target: https://concise-bio.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status

..
.. image:: https://pyup.io/repos/github/avsecz/concise/shield.svg
:target: https://pyup.io/repos/github/avsecz/concise/
:alt: Updates


CONCISE (COnvolutional neural Network for CIS-regulatory Elements) is a model for predicting any quatitative outcome (say mRNA half-life) from cis-regulatory sequence using deep learning.

* Developed by the Gagneur Lab (computational biology): http://www.gagneurlab.in.tum.de
* Free software: MIT license
* Documentation: https://concise-bio.readthedocs.io

Features
--------

* Architecture:
::

Sequence +-> Conv -> reLU -> average pool +-> y <-+ Additional linear features
^
|
Positional bias +-----+


* Very simple API
* Serializing the model to JSON
- allows to analyze the results in any langugage of choice
* Helper function for hyper-parameter random search
* CONCISE uses TensorFlow at its core and is hence able of using GPU computing

Installation
------------

After installing the following prerequisites:

1. Python (3.4 or 3.5) with pip (see `Python installation guide`_ and `pip documentation`_)
2. TensorFlow python package (see `TensorFlow installation guide`_ or `Installing Tensorflow on AWS GPU-instance`_)

install CONCISE using pip:

::

pip install concise


.. _pip documentation: https://pip.pypa.io
.. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/
.. _TensorFlow installation guide: https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html
.. _Installing Tensorflow on AWS GPU-instance: http://max-likelihood.com/2016/06/18/aws-tensorflow-setup/

Getting Started
---------------

.. code-block:: python

import pandas as pd
import concise

# read-in and prepare the data
dt = pd.read_csv("./data/pombe_half-life_UTR3.csv")

X_feat, X_seq, y, id_vec = concise.prepare_data(dt,
features=["UTR3_length", "UTR5_length"],
response="hlt",
sequence="seq",
id_column="ID",
seq_align="end",
trim_seq_len=500,
)

######
# Train CONCISE
######

# initialize CONCISE
co = concise.Concise(motif_length = 9, n_motifs = 2, init_motifs = ("TATTTAT", "TTAATGA"))

# train:
# - on a GPU if tensorflow is compiled with GPU support
# - on a CPU with 5 cores otherwise
co.train(X_feat[500:], X_seq[500:], y[500:], n_cores = 5)

# predict
co.predict(X_feat[:500], X_seq[:500])

# get fitted weights
co.get_weights()

# save/load from a file
co.save("./Concise.json")
co2 = Concise.load("./Concise.json")

######
# Train CONCISE in 5-fold cross-validation
######

# intialize
co3 = concise.Concise(motif_length = 9, n_motifs = 2, init_motifs = ("TATTTAT", "TTAATGA"))
cocv = concise.ConciseCV(concise_object = co3)

# train
cocv.train(X_feat, X_seq, y, id_vec,
n_folds=5, n_cores=3, train_global_model=True)

# out-of-fold prediction
cocv.get_CV_prediction()

# save/load from a file
cocv.save("./Concise.json")
cocv2 = ConciseCV.load("./Concise.json")



Where to go from here:
----------------------

* See the example file `<scripts/example-workflow.py>`_
* Read the API Documenation https://concise-bio.readthedocs.io/en/latest/documentation.html


=======
History
=======

0.1.0 (2016-09-15)
------------------

* First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concise-0.1.1.tar.gz (731.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

concise-0.1.1-py2.py3-none-any.whl (24.9 kB view details)

Uploaded Python 2Python 3

File details

Details for the file concise-0.1.1.tar.gz.

File metadata

  • Download URL: concise-0.1.1.tar.gz
  • Upload date:
  • Size: 731.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for concise-0.1.1.tar.gz
Algorithm Hash digest
SHA256 0a4b5509a587d9e615f1a091de9c78445fd1b4a7dde6095b8b83985d33e81f43
MD5 60f82d78e7e2c3a383be41e0e9102d96
BLAKE2b-256 fd3857dffcc7527858a6ecb07a2b96389bf6fd688a0a5f62de10e7fa8af35923

See more details on using hashes here.

File details

Details for the file concise-0.1.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for concise-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 45dac3f4c2e904d4129d4c805bae8d98357a9ffb94bf98a04c9ba2055b400857
MD5 58f1310ac9ff7c5fda5a5b7082efd3cb
BLAKE2b-256 4437249f123e1e47a2174b033d6835b4f718e235e8c995e8f74ba9620d5d1783

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page