Skip to main content

CONCISE (COnvolutional Neural for CIS-regulatory Elements) is a model for predicting PTR features like mRNA half-life from cis-regulatory elements using deep learning.

Project description

===============================
CONCISE
===============================


.. image:: https://img.shields.io/pypi/v/concise.svg
:target: https://pypi.python.org/pypi/concise

.. image:: https://img.shields.io/travis/Avsecz/concise.svg
:target: https://travis-ci.org/Avsecz/concise

.. image:: https://readthedocs.org/projects/concise-bio/badge/?version=latest
:target: https://concise-bio.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status

..
.. image:: https://pyup.io/repos/github/avsecz/concise/shield.svg
:target: https://pyup.io/repos/github/avsecz/concise/
:alt: Updates


CONCISE (COnvolutional neural Network for CIS-regulatory Elements) is a model for predicting any quatitative outcome (say mRNA half-life) from cis-regulatory sequence using deep learning.

* Developed by the Gagneur Lab (computational biology): http://www.gagneurlab.in.tum.de
* Free software: MIT license
* Documentation: https://concise-bio.readthedocs.io

.. image:: concise-figure1.png
:width: 60%
:align: center

Features
--------

* Very simple API
* Serializing the model to JSON
- allows to analyze the results in any langugage of choice
* Helper function for hyper-parameter random search
* CONCISE uses TensorFlow at its core and is hence able of using GPU computing

Installation
------------

After installing the following prerequisites:

1. Python (3.4 or 3.5) with pip (see `Python installation guide`_ and `pip documentation`_)
2. TensorFlow python package (see `TensorFlow installation guide`_ or `Installing Tensorflow on AWS GPU-instance`_)

install CONCISE using pip:

::

pip install concise


.. _pip documentation: https://pip.pypa.io
.. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/
.. _TensorFlow installation guide: https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html
.. _Installing Tensorflow on AWS GPU-instance: http://max-likelihood.com/2016/06/18/aws-tensorflow-setup/

Getting Started
---------------

.. code-block:: python

import pandas as pd
import concise

# read-in and prepare the data
dt = pd.read_csv("./data/pombe_half-life_UTR3.csv")

X_feat, X_seq, y, id_vec = concise.prepare_data(dt,
features=["UTR3_length", "UTR5_length"],
response="hlt",
sequence="seq",
id_column="ID",
seq_align="end",
trim_seq_len=500,
)

######
# Train CONCISE
######

# initialize CONCISE
co = concise.Concise(motif_length = 9, n_motifs = 2,
init_motifs = ("TATTTAT", "TTAATGA"))

# train:
# - on a GPU if tensorflow is compiled with GPU support
# - on a CPU with 5 cores otherwise
co.train(X_feat[500:], X_seq[500:], y[500:], n_cores = 5)

# predict
co.predict(X_feat[:500], X_seq[:500])

# get fitted weights
co.get_weights()

# save/load from a file
co.save("./Concise.json")
co2 = Concise.load("./Concise.json")

######
# Train CONCISE in 5-fold cross-validation
######

# intialize
co3 = concise.Concise(motif_length = 9, n_motifs = 2,
init_motifs = ("TATTTAT", "TTAATGA"))

cocv = concise.ConciseCV(concise_object = co3)

# train
cocv.train(X_feat, X_seq, y, id_vec,
n_folds=5, n_cores=3, train_global_model=True)

# out-of-fold prediction
cocv.get_CV_prediction()

# save/load from a file
cocv.save("./Concise.json")
cocv2 = ConciseCV.load("./Concise.json")



Where to go from here:
----------------------

* See the example file `<scripts/example-workflow.py>`_
* Read the API Documenation https://concise-bio.readthedocs.io/en/latest/documentation.html


=======
History
=======

0.1.0 (2016-09-15)
------------------

* First release on PyPI.

0.1.1 (2016-09-17)
------------------

* Minor documentation changes
* Renamed some internal variables

0.2.0 (2016-09-21)
------------------

* Introduced new feature: regress_out_feat
* Major renaming of variables for concistency

0.3.0 (2016-11-30)
------------------

* Added L-BFGS optimizer in addition to Adam. Use optimizer="lbfgs" in Concise()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concise-0.3.0.tar.gz (733.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

concise-0.3.0-py2.py3-none-any.whl (26.5 kB view details)

Uploaded Python 2Python 3

File details

Details for the file concise-0.3.0.tar.gz.

File metadata

  • Download URL: concise-0.3.0.tar.gz
  • Upload date:
  • Size: 733.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for concise-0.3.0.tar.gz
Algorithm Hash digest
SHA256 652ca9097210c30389f41ed2c5bd3eca1fd557cb1da2325ab705a9537be1f3fd
MD5 7405f85f2217716a264fabc5404b1692
BLAKE2b-256 a17b8246c58ba58331f1bb976918e92ba04cdcb46606f4a4b96eaa04c111450a

See more details on using hashes here.

File details

Details for the file concise-0.3.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for concise-0.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e993ec519cf46c2a951c96e3242e26c79c7c4db53c463dcf11bd3b3a44760c03
MD5 0d561f8716971c72a21a6bbd749be59c
BLAKE2b-256 dad642f87017b780345fd1469b2bb1fd2cf9a917676e75a66885db3782eceabb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page