Skip to main content

Fast inference engine for Transformer models

Project description

CI PyPI version Documentation Gitter Forum

CTranslate2

CTranslate2 is a C++ and Python library for efficient inference with Transformer models.

The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU.

The following model types are currently supported:

  • Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, T5, Whisper
  • Decoder-only models: GPT-2, GPT-J, GPT-NeoX, OPT, BLOOM, MPT, Llama, Mistral, Gemma, CodeGen, GPTBigCode, Falcon, Qwen2
  • Encoder-only models: BERT, DistilBERT, XLM-RoBERTa

Compatible models should be first converted into an optimized model format. The library includes converters for multiple frameworks:

The project is production-oriented and comes with backward compatibility guarantees, but it also includes experimental features related to model compression and inference acceleration.

Key features

  • Fast and efficient execution on CPU and GPU
    The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc.
  • Quantization and reduced precision
    The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit brain floating points (BF16), 16-bit integers (INT16), 8-bit integers (INT8) and AWQ quantization (INT4).
  • Multiple CPU architectures support
    The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
  • Automatic CPU detection and code dispatch
    One binary can include multiple backends (e.g. Intel MKL and oneDNN) and instruction set architectures (e.g. AVX, AVX2) that are automatically selected at runtime based on the CPU information.
  • Parallel and asynchronous execution
    Multiple batches can be processed in parallel and asynchronously using multiple GPUs or CPU cores.
  • Dynamic memory usage
    The memory usage changes dynamically depending on the request size while still meeting performance requirements thanks to caching allocators on both CPU and GPU.
  • Lightweight on disk
    Quantization can make the models 4 times smaller on disk with minimal accuracy loss.
  • Simple integration
    The project has few dependencies and exposes simple APIs in Python and C++ to cover most integration needs.
  • Configurable and interactive decoding
    Advanced decoding features allow autocompleting a partial sequence and returning alternatives at a specific location in the sequence.
  • Support tensor parallelism for distributed inference
    Very large model can be split into multiple GPUs. Following this documentation to set up the required environment.

Some of these features are difficult to achieve with standard deep learning frameworks and are the motivation for this project.

Installation and usage

CTranslate2 can be installed with pip:

pip install ctranslate2

The Python module is used to convert models and can translate or generate text with few lines of code:

translator = ctranslate2.Translator(translation_model_path)
translator.translate_batch(tokens)

generator = ctranslate2.Generator(generation_model_path)
generator.generate_batch(start_tokens)

See the documentation for more information and examples.

Benchmarks

We translate the En->De test set newstest2014 with multiple models:

  • OpenNMT-tf WMT14: a base Transformer trained with OpenNMT-tf on the WMT14 dataset (4.5M lines)
  • OpenNMT-py WMT14: a base Transformer trained with OpenNMT-py on the WMT14 dataset (4.5M lines)
  • OPUS-MT: a base Transformer trained with Marian on all OPUS data available on 2020-02-26 (81.9M lines)

The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers.

Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings.

CPU

Tokens per second Max. memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.31.0 (with TensorFlow 2.11.0) 209.2 2653MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 3.0.4 (with PyTorch 1.13.1) 275.8 2012MB 26.77
- int8 323.3 1359MB 26.72
CTranslate2 3.6.0 658.8 849MB 26.77
- int16 733.0 672MB 26.82
- int8 860.2 529MB 26.78
- int8 + vmap 1126.2 598MB 26.64
OPUS-MT model
Transformers 4.26.1 (with PyTorch 1.13.1) 147.3 2332MB 27.90
Marian 1.11.0 344.5 7605MB 27.93
- int16 330.2 5901MB 27.65
- int8 355.8 4763MB 27.27
CTranslate2 3.6.0 525.0 721MB 27.92
- int16 596.1 660MB 27.53
- int8 696.1 516MB 27.65

Executed with 4 threads on a c5.2xlarge Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.

GPU

Tokens per second Max. GPU memory Max. CPU memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.31.0 (with TensorFlow 2.11.0) 1483.5 3031MB 3122MB 26.94
OpenNMT-py WMT14 model
OpenNMT-py 3.0.4 (with PyTorch 1.13.1) 1795.2 2973MB 3099MB 26.77
FasterTransformer 5.3 6979.0 2402MB 1131MB 26.77
- float16 8592.5 1360MB 1135MB 26.80
CTranslate2 3.6.0 6634.7 1261MB 953MB 26.77
- int8 8567.2 1005MB 807MB 26.85
- float16 10990.7 941MB 807MB 26.77
- int8 + float16 8725.4 813MB 800MB 26.83
OPUS-MT model
Transformers 4.26.1 (with PyTorch 1.13.1) 1022.9 4097MB 2109MB 27.90
Marian 1.11.0 3241.0 3381MB 2156MB 27.92
- float16 3962.4 3239MB 1976MB 27.94
CTranslate2 3.6.0 5876.4 1197MB 754MB 27.92
- int8 7521.9 1005MB 792MB 27.79
- float16 9296.7 909MB 814MB 27.90
- int8 + float16 8362.7 813MB 766MB 27.90

Executed with CUDA 11 on a g5.xlarge Amazon EC2 instance equipped with a NVIDIA A10G GPU (driver version: 510.47.03).

Additional resources

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ctranslate2-4.6.0-cp313-cp313-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.13Windows x86-64

ctranslate2-4.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

ctranslate2-4.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

ctranslate2-4.6.0-cp313-cp313-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

ctranslate2-4.6.0-cp313-cp313-macosx_10_13_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

ctranslate2-4.6.0-cp312-cp312-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.12Windows x86-64

ctranslate2-4.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

ctranslate2-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

ctranslate2-4.6.0-cp312-cp312-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

ctranslate2-4.6.0-cp312-cp312-macosx_10_13_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

ctranslate2-4.6.0-cp311-cp311-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.11Windows x86-64

ctranslate2-4.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ctranslate2-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

ctranslate2-4.6.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ctranslate2-4.6.0-cp311-cp311-macosx_10_13_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.11macOS 10.13+ x86-64

ctranslate2-4.6.0-cp310-cp310-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.10Windows x86-64

ctranslate2-4.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ctranslate2-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

ctranslate2-4.6.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ctranslate2-4.6.0-cp310-cp310-macosx_10_13_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10macOS 10.13+ x86-64

ctranslate2-4.6.0-cp39-cp39-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.9Windows x86-64

ctranslate2-4.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ctranslate2-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

ctranslate2-4.6.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ctranslate2-4.6.0-cp39-cp39-macosx_10_13_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.9macOS 10.13+ x86-64

File details

Details for the file ctranslate2-4.6.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 af555c75cb9a9cc6c385f38680b92fa426761cf690e4479b1e962e2b17e02972
MD5 822b4490d5619e22b424273cbb1756f1
BLAKE2b-256 d59637470cbab08464a31877eb80c3ca3f56d097a1616adc982b53c5bf71d2c2

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 039aa6cc3ed662931a60dec0be28abeaaceb3cc6f476060b8017a7a39a54a9f6
MD5 5f9b4ffd2c3da3bbbbbdd1f00a996638
BLAKE2b-256 776d131193b68d3884f9ab9474d916c6244df2914fbb3234d2a4c1fada72b1d6

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a719cd765ec10fe20f9a866093e777a000fd926a0bf235c7921f12c84befb443
MD5 d8a0fdd0cdc6093143b2d6d2368cd510
BLAKE2b-256 1352249565849281e7d6c997ffca88447b8806c119e1b0d1f799c27dda061440

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ebaae12ade184a235569235a875cf03d53b07732342f93b96ae76ef02c31961
MD5 d9ad42473b1d2c1d030d976139b29055
BLAKE2b-256 1b65d6470f6cfb10e5a065bd71c8cf99d5d107a9d33caedaa622ad7bd9dca01d

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6283ffe63831b980282ff64ab845c62c7ef771f2ce06cb34825fd7578818bf07
MD5 b770f4a82ed5b07b60378e717b1cae50
BLAKE2b-256 5996dea1633368d60eb3da7403f3773cc2ba7988e56044ae155f68ab1ebb8f81

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 511cdf810a5bf6a2cec735799e5cd47966e63f8f7688fdee1b97fed621abda00
MD5 2c434cfe141cb4c479c5cb8c7e0b68aa
BLAKE2b-256 ec4c0ecd260233290bee4b2facec4d8e755e57d8781d68f276e1248433993c9f

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06b2ca5c2905b540dd833a0b75d912ec9acc18d33a2dc4f85f12032851659a0d
MD5 a550df86543962c638a86bc9d236a688
BLAKE2b-256 cee906c2bf49d6808359d71f1126ec5b8e5a5c3c9526899ed58f24666e0e1b86

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44bf4b973ea985b80696093e11e9c72909aee55b35abb749428333822c70ce68
MD5 c217ab49f2f0ed0eda83c0bb825bf8e6
BLAKE2b-256 3fb377af5ad0e896dd27a10db768d7a67b8807e394c8e68c2fa559c662a33547

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78a844c633b6d450b20adac296f7f60ac2a67f2c76e510a83c8916835dc13f04
MD5 2a1fd673e2e7b34784345a71b29b7681
BLAKE2b-256 2a723880c3be097596a523cb24b52dc0514f685c2ec0bab9cceaeed874aeddec

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ff3ad05010857d450ee40fd9c28a33c10215a7180e189151e378ed2d19be8a57
MD5 b7ec33bbd47799a70d9005d0ba802f69
BLAKE2b-256 02e93f1e35528b445b2fc928063f3ddd1ca5ac195b08c28ab10312e599c5cf28

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 865649cebae240fe8c5b3e868354ea6c611d2ec17f335848caf890fca6c62d71
MD5 b92c82fd79c0076e5343ab93c0e7a317
BLAKE2b-256 e185284c30508fc3627c6adc855207fc970cb41c894acbbb3e6351f4874ac7c2

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79e4f2e8ea7f24797c80e0f4593d30447ef8da9036ebb4402b7f6c54687b7a46
MD5 bc418c2dfb69b069764c9fc31063d6ff
BLAKE2b-256 3f895991e0e7333b9f4d2022ea817c0017d4cbc6891be1b3b190a0112f753430

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f4691a66cb7b9ffb04ebff4291055c20223449a6534c4a52b7432b0853946d0
MD5 1a591c356802b137c8d2158a43f3b73d
BLAKE2b-256 33831cf0b771778830fc9d00d166b90aabf27d5b5df4874d92ce5e7c4ea9e090

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00097c52bf6be97f753e39bc7399f23bdf9803df942094b8cecdd8432f0335d5
MD5 c9278af475e01244b1ee763eaa8fce4a
BLAKE2b-256 61bf42a5c004547b92cfacad221e126af182c7d98471a44cfdc41bc09c9a929a

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2f80538ce0f619540499b505747179ee5e86a5c9b80361c1582f7c725d660509
MD5 22a952cec40d20ddd753dd8f5a0969dc
BLAKE2b-256 17d91857a64cdbaf3c514e145d5bb06f4c659689ad086054e3c87874c29f1e5e

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f99502996361f7dc35f00b95a01e414c8d8ff75b8a58da97e378ceb5560689ae
MD5 7b60de12e9eb79c0acf22cb29ba52bbd
BLAKE2b-256 23e3591b46613582baea22de7308af3b10fd2188f177856282745771ff954319

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ac5a714890e9f5f6876005c8a8fb2bdf9bec88437c38ff3efd71bd65333519d
MD5 43d021cd8f9aa05bf30966557b501e80
BLAKE2b-256 8dbca342f732a48258d0c9ae6d08f007e792705bc371e0ed93cf499ffc28f80c

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ed15383afc9d4e448d4090389f06c141a5ce1510e610c1aa7021332cfbc97f1
MD5 c4e356bd8d201d7c800dd7d843d1960b
BLAKE2b-256 ad38e8121d6e29cee029ab21be01612a173dcf62a93324e43197f7b0d122645b

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5da5eee549db5137e9082fa7b479bd8bf273d9a961afdf3f8ecff2527fdf71e
MD5 3e98d1832f0b07aeb08ad10e9585bd59
BLAKE2b-256 ba9c22417d43afc919e66f8218d6da4496bbff43636405902b4f53484ec801db

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aeadeb7fd11f37ec96b40952402ce35ee7d214b09e1634fb11934f7d5e4ad1d7
MD5 fe19e2c36dd339df32c95f4896199acd
BLAKE2b-256 71ea4d8f098c96873196ed87cfcd0bdb65a4b1783d18030e84633bc965241ae1

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-4.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for ctranslate2-4.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3bf04cb9d1990b97a122137410dc6e93c7e24683f243218ef334afc0f5f6c030
MD5 b458e5c4a9babad98fe61078781ea387
BLAKE2b-256 1d4684ced9ace4416a4c2ab1a81e8f3d5d85a1ce8a5eb9494fb3a10f114602ae

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f88fb05d6d22d702ecb2bb6eb236b77e0c55a6b577d4116bb697c6f509aa98c0
MD5 5733a34864955bcc906ad3898f07ba4c
BLAKE2b-256 43ac01ba7ff8b57f94cdd96940fa5e13e9f01bf0c4261bab80a3bb3ee554386c

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc3c4c9ab59de1f05e78d0c37dc4cce58b55ed7760d0e12dc3de51d4b647cd02
MD5 d903f161875d4ff0352e5772358d1417
BLAKE2b-256 1b1203750e41ec088b68e253f214c35248e26cc99ca42b996962002de42d79e4

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fbee3bc08f63b263b942631f1d49af9c27851ce1796ac8f69aa6c1048513878f
MD5 fb831f2008688f697db5ea2f435761c6
BLAKE2b-256 2394088a59d079422b2202b68c2f4d4fee5d244ac92c07a1782ea8724184fa48

See more details on using hashes here.

File details

Details for the file ctranslate2-4.6.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-4.6.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9bf6b954ca9a2d82d5d0f701eaf980c00ef58998aea71ce0b1c4f9ed3cc66c4d
MD5 7c1524f43d551b6c17b19f998af07cb4
BLAKE2b-256 c7d1a2ae7263cda3e0a217133eeb511e2a6b69d71f569fa2c34833c5467c0e65

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page