Skip to main content

Fast inference engine for Transformer models

Project description

CI PyPI version Documentation Gitter Forum

CTranslate2

CTranslate2 is a C++ and Python library for efficient inference with Transformer models.

The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The following model types are currently supported:

  • Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, T5, Whisper
  • Decoder-only models: GPT-2, OPT

Compatible models should be first converted into an optimized model format. The library includes converters for multiple frameworks:

The project is production-oriented and comes with backward compatibility guarantees, but it also includes experimental features related to model compression and inference acceleration.

Key features

  • Fast and efficient execution on CPU and GPU
    The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc.
  • Quantization and reduced precision
    The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit integers (INT16), and 8-bit integers (INT8).
  • Multiple CPU architectures support
    The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
  • Automatic CPU detection and code dispatch
    One binary can include multiple backends (e.g. Intel MKL and oneDNN) and instruction set architectures (e.g. AVX, AVX2) that are automatically selected at runtime based on the CPU information.
  • Parallel and asynchronous execution
    Multiple batches can be processed in parallel and asynchronously using multiple GPUs or CPU cores.
  • Dynamic memory usage
    The memory usage changes dynamically depending on the request size while still meeting performance requirements thanks to caching allocators on both CPU and GPU.
  • Lightweight on disk
    Quantization can make the models 4 times smaller on disk with minimal accuracy loss.
  • Simple integration
    The project has few dependencies and exposes simple APIs in Python and C++ to cover most integration needs.
  • Configurable and interactive decoding
    Advanced decoding features allow autocompleting a partial sequence and returning alternatives at a specific location in the sequence.

Some of these features are difficult to achieve with standard deep learning frameworks and are the motivation for this project.

Installation and usage

CTranslate2 can be installed with pip:

pip install ctranslate2

The Python module is used to convert models and can translate or generate text with few lines of code:

translator = ctranslate2.Translator(translation_model_path)
translator.translate_batch(tokens)

generator = ctranslate2.Generator(generation_model_path)
generator.generate_batch(start_tokens)

See the documentation for more information and examples.

Benchmarks

We translate the En->De test set newstest2014 with multiple models:

  • OpenNMT-tf WMT14: a base Transformer trained with OpenNMT-tf on the WMT14 dataset (4.5M lines)
  • OpenNMT-py WMT14: a base Transformer trained with OpenNMT-py on the WMT14 dataset (4.5M lines)
  • OPUS-MT: a base Transformer trained with Marian on all OPUS data available on 2020-02-26 (81.9M lines)

The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers.

Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings.

CPU

Tokens per second Max. memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.31.0 (with TensorFlow 2.11.0) 209.2 2653MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 3.0.4 (with PyTorch 1.13.1) 275.8 2012MB 26.77
- int8 323.3 1359MB 26.72
CTranslate2 3.6.0 658.8 849MB 26.77
- int16 733.0 672MB 26.82
- int8 860.2 529MB 26.78
- int8 + vmap 1126.2 598MB 26.64
OPUS-MT model
Transformers 4.26.1 (with PyTorch 1.13.1) 147.3 2332MB 27.90
Marian 1.11.0 344.5 7605MB 27.93
- int16 330.2 5901MB 27.65
- int8 355.8 4763MB 27.27
CTranslate2 3.6.0 525.0 721MB 27.92
- int16 596.1 660MB 27.53
- int8 696.1 516MB 27.65

Executed with 4 threads on a c5.2xlarge Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.

GPU

Tokens per second Max. GPU memory Max. CPU memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.31.0 (with TensorFlow 2.11.0) 1483.5 3031MB 3122MB 26.94
OpenNMT-py WMT14 model
OpenNMT-py 3.0.4 (with PyTorch 1.13.1) 1795.2 2973MB 3099MB 26.77
FasterTransformer 5.3 6979.0 2402MB 1131MB 26.77
- float16 8592.5 1360MB 1135MB 26.80
CTranslate2 3.6.0 6634.7 1261MB 953MB 26.77
- int8 8567.2 1005MB 807MB 26.85
- float16 10990.7 941MB 807MB 26.77
- int8 + float16 8725.4 813MB 800MB 26.83
OPUS-MT model
Transformers 4.26.1 (with PyTorch 1.13.1) 1022.9 4097MB 2109MB 27.90
Marian 1.11.0 3241.0 3381MB 2156MB 27.92
- float16 3962.4 3239MB 1976MB 27.94
CTranslate2 3.6.0 5876.4 1197MB 754MB 27.92
- int8 7521.9 1005MB 792MB 27.79
- float16 9296.7 909MB 814MB 27.90
- int8 + float16 8362.7 813MB 766MB 27.90

Executed with CUDA 11 on a g5.xlarge Amazon EC2 instance equipped with a NVIDIA A10G GPU (driver version: 510.47.03).

Additional resources

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ctranslate2-3.8.0-cp311-cp311-win_amd64.whl (18.0 MB view details)

Uploaded CPython 3.11Windows x86-64

ctranslate2-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ctranslate2-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

ctranslate2-3.8.0-cp311-cp311-macosx_11_0_arm64.whl (865.5 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ctranslate2-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ctranslate2-3.8.0-cp310-cp310-win_amd64.whl (18.0 MB view details)

Uploaded CPython 3.10Windows x86-64

ctranslate2-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ctranslate2-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

ctranslate2-3.8.0-cp310-cp310-macosx_11_0_arm64.whl (865.5 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ctranslate2-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ctranslate2-3.8.0-cp39-cp39-win_amd64.whl (17.9 MB view details)

Uploaded CPython 3.9Windows x86-64

ctranslate2-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ctranslate2-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

ctranslate2-3.8.0-cp39-cp39-macosx_11_0_arm64.whl (865.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ctranslate2-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ctranslate2-3.8.0-cp38-cp38-win_amd64.whl (18.0 MB view details)

Uploaded CPython 3.8Windows x86-64

ctranslate2-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

ctranslate2-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

ctranslate2-3.8.0-cp38-cp38-macosx_11_0_arm64.whl (865.5 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

ctranslate2-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

ctranslate2-3.8.0-cp37-cp37m-win_amd64.whl (18.0 MB view details)

Uploaded CPython 3.7mWindows x86-64

ctranslate2-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

ctranslate2-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

ctranslate2-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file ctranslate2-3.8.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f195ee80189e838ec8b7511bbbc4f1bca8fa8bf0de1b8f7a70d31fb28fe03427
MD5 f06bd1caf8efba1d57a2081f804cc087
BLAKE2b-256 d5cbe2f81df9b99cfa46eca71e3f2d8ffe8e65b39ccec942d3ee5303d885e9aa

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcecc43d0243e74135d9f99f652181aa2e607ef7e5b16afa4784129653a863ce
MD5 99f241d7784b5c12d28e4956d42f3477
BLAKE2b-256 c6eddb5863149949069916a89637b1f35f2cba28189b7de2505f180b60456df6

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dbe76baf41d5df8829b11f667bf4d3895425c98d2abb9ce2cdc5d3bf976c3945
MD5 05f982cdd509a52934213f92dcabc749
BLAKE2b-256 2ba9f76faf60399bee3601e10324840f8e4cda184e7525ad78af627cad23d97d

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77e32b2f1242a127d546e0e45bcf746e2ddc5f3a360ccc9fffe73767d7de7313
MD5 b0220619e01f11f2f247d50b302d2c58
BLAKE2b-256 2a3c8284474d641faf12cbaa565e4ef7dd40d15179bc1bf2bb3998d1e9760771

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 325447cf323dcf935848023fcde8921f790c4d03e36aafc8b43314ec2a1b1be9
MD5 c43e06fb7d51c6729c3656b62b3398a3
BLAKE2b-256 70c3773273fb2a310e6267879352838e06c200374b418663fd66eb466f5071d6

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 380b835d486d1853c5270542d63777d30151b2f39722b946b9958bd36a992624
MD5 6b6c0b66d73a419e9303a13da569e78c
BLAKE2b-256 3ee556c6ef91a78d44ada5f38604794e61981b0ce519deb3f1e7828198739661

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2b191345e02ea3543c5aa24e66710c2099cbced03ecde7de84e3a9180bd6e6c
MD5 c9c77fd90f3ab947276cacddd361a86c
BLAKE2b-256 f9787d2007bde5694563eadf571e694b0f6d2d7335bf1ad9c26d5885844b19d6

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 815c1d033026307074b369cd6b0c8599b43188d25be27aa3ae5a54e494d39826
MD5 fd57b7d839edb679db8a9d218119406b
BLAKE2b-256 9d8d0a193c5e38238796707f756fea302691aab6b70a85849de9e371bfde34cf

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8d9f92efdfa2f223fa0a2cb217cb55acdaceeaf7270ad5e42cfaf635070927f
MD5 1753eb52b5d037ef3df02e3c2d8e52e5
BLAKE2b-256 5d40d91d929f8e505056277e8dcb5591dc926b9cabd510eb161c97bc52770579

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da2735d913f5441f1d8003f30bb3c89fbc8114657f7fe1dbdd25fa833e475c54
MD5 92af8ac50d39a134e2d321a762d6f614
BLAKE2b-256 da1170441a65b9bdef881b210bd8536f04aee2bb8dd9cd5ac82a685b608a82d6

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 17.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ctranslate2-3.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f0c1c906249fa36f9d6adee4e8ba3b7788283da64c40578b060b15a8cb1f9cca
MD5 65214d0b890a4440be85d974e4f660f8
BLAKE2b-256 d8e56042430f50f8dd4a3175635dee7fc52e41b949f3636c69ee19ce5cace3d6

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06624a93abc5ada2b69506c64101ad37f7a6049cc8d72412fb35057f2ba05c2b
MD5 3cee755c099e907b8230b65c20cef0d1
BLAKE2b-256 3e8595a0bcdf226aab7c0c1cfa0d4e198d7db0193583f101017db3f22bc9d995

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e2b18069d3ebad7a859c4bc2d6da1b8e73684b85cc7c4744973b2b8e1a4f252
MD5 dcaf004aca68f93736471577c770ffad
BLAKE2b-256 3051d47f545f1bd9f1845066434a728dc89ce6c11248ca807940f012fa1a3b5a

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 614da472d83980229151b76a23f5e13428a38355cd2d099e4490590d4cd9ddf1
MD5 0371bebe684b756c4a8e23d02d2f3283
BLAKE2b-256 01fc4fdb2aa47c244535bbc198a945a8beb3142f15da6f529208e50a8254eaaf

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de065f6211be0af300a7d096b86cec806655d5afbfc8ef448922a359fc369d56
MD5 d2f80f41ee6f1809d495076ba9173ff9
BLAKE2b-256 4d5b045876471dfb8c40b1f7f4a777ec60fd84b6078cdec983c31878f5299298

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 18.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ctranslate2-3.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a6a1a32ce795ad988f36d9777d580a7ed14c02ad7daa34cd044da78c74405ebe
MD5 04df1a303de401add57e1943373a3513
BLAKE2b-256 0c801c720d7cf9dec329c27e9e9be979f5958682f30a2c102edce3f83b654e68

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b4bdae7c3a2d19a1ba2975c8ab8f0c706b150c8401b59ce331b1f13a4f6cbc7
MD5 c55bbb10884ec5d45bc123801e3e2e52
BLAKE2b-256 d577126ee66aaf2c3adbd8be7df7557083163694dc6b6362dc7eca415fa96fb2

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6acba9d19c236a9af714e172effea1a90642cee0b6b7c3668d0890f02c0a298d
MD5 50407f74817873a03c3bde72231cb349
BLAKE2b-256 a069f73a726d52ae53d89f5dc4d6d4a13fbc4829b3e34352dae066c5592f14cd

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c8bc733c3c78cb7bce9bfc78bb54168da6ff6640b4dc7403a2ae1c6b53e630c
MD5 9da75afcefa980c02e3bfc775ca93e04
BLAKE2b-256 fd92edcae3aa9f1eb62f45f3868d34e1154e2119aa5ac25fa6bb48533ffe8fe2

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3be7e17c525983496636e50e20b91935d175310ea2c1ca1d503479025e570fd
MD5 e44a3c4db934e946780300f648401e7e
BLAKE2b-256 81ea11e0873c6d5cd3ca90d750066e18a1febe1180a01155cb3c7ac6d9182beb

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 18.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ctranslate2-3.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5ea64e39ba38a9ea8a4bce2977c9f0c0a520b91d5ad969751a3a3bca3427f557
MD5 ad9fefd367f9cab7968dabe201975fda
BLAKE2b-256 a8f185feb07ade3c997067d9758fb743aff06ca3d582bd74af2aeeb1255b5f79

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 967261f6b874891cd4155c7cef4786d367cb88dde8e5b36c97014e11871d0a57
MD5 aaee74688735bc93480ac0e45a3011eb
BLAKE2b-256 fad33f6f87bdd92af09572f322663d1ec3d46d307c46c886204504f650052742

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 907acd3dfaaeded3bfd63ab50f5cfe86b7058e92fa94af029f4da6bdcc97ea4f
MD5 625c6227ab2070b3b6ddb3bbcf6bdf01
BLAKE2b-256 ca12bdc48075cf8386a28e665b45c47663fc3ba8da768f4fcabc9abb4e47f61a

See more details on using hashes here.

File details

Details for the file ctranslate2-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08d4ef18c44fc6c518543a987b8538072c628c9c321cabe85ce6946233dc9d55
MD5 f5931736b38b90a8aa64e3e9ee9d0f69
BLAKE2b-256 b9a1cc8dcfcf9c5c4bca7f9b0d1f493414cfd487c50d5ce9524ae29c089b186f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page