Skip to main content

Fast inference engine for Transformer models

Project description

CI PyPI version Documentation Gitter Forum

CTranslate2

CTranslate2 is a C++ and Python library for efficient inference with Transformer models.

The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The following model types are currently supported:

  • Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, T5, Whisper
  • Decoder-only models: GPT-2, OPT

Compatible models should be first converted into an optimized model format. The library includes converters for multiple frameworks:

The project is production-oriented and comes with backward compatibility guarantees, but it also includes experimental features related to model compression and inference acceleration.

Key features

  • Fast and efficient execution on CPU and GPU
    The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc.
  • Quantization and reduced precision
    The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit integers (INT16), and 8-bit integers (INT8).
  • Multiple CPU architectures support
    The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
  • Automatic CPU detection and code dispatch
    One binary can include multiple backends (e.g. Intel MKL and oneDNN) and instruction set architectures (e.g. AVX, AVX2) that are automatically selected at runtime based on the CPU information.
  • Parallel and asynchronous execution
    Multiple batches can be processed in parallel and asynchronously using multiple GPUs or CPU cores.
  • Dynamic memory usage
    The memory usage changes dynamically depending on the request size while still meeting performance requirements thanks to caching allocators on both CPU and GPU.
  • Lightweight on disk
    Quantization can make the models 4 times smaller on disk with minimal accuracy loss.
  • Simple integration
    The project has few dependencies and exposes simple APIs in Python and C++ to cover most integration needs.
  • Configurable and interactive decoding
    Advanced decoding features allow autocompleting a partial sequence and returning alternatives at a specific location in the sequence.

Some of these features are difficult to achieve with standard deep learning frameworks and are the motivation for this project.

Installation and usage

CTranslate2 can be installed with pip:

pip install ctranslate2

The Python module is used to convert models and can translate or generate text with few lines of code:

translator = ctranslate2.Translator(translation_model_path)
translator.translate_batch(tokens)

generator = ctranslate2.Generator(generation_model_path)
generator.generate_batch(start_tokens)

See the documentation for more information and examples.

Benchmarks

We translate the En->De test set newstest2014 with multiple models:

  • OpenNMT-tf WMT14: a base Transformer trained with OpenNMT-tf on the WMT14 dataset (4.5M lines)
  • OpenNMT-py WMT14: a base Transformer trained with OpenNMT-py on the WMT14 dataset (4.5M lines)
  • OPUS-MT: a base Transformer trained with Marian on all OPUS data available on 2020-02-26 (81.9M lines)

The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers.

Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings.

CPU

Tokens per second Max. memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.26.1 (with TensorFlow 2.9.0) 283.0 3475MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 2.2.0 (with PyTorch 1.11.0) 474.2 1543MB 26.77
- int8 510.6 1455MB 26.72
CTranslate2 2.17.0 1220.2 1072MB 26.77
- int16 1534.8 920MB 26.82
- int8 1737.5 771MB 26.89
- int8 + vmap 2122.4 666MB 26.62
OPUS-MT model
Transformers 4.19.2 230.1 2840MB 27.92
Marian 1.11.0 756.6 13819MB 27.93
- int16 718.4 10395MB 27.65
- int8 853.3 8166MB 27.27
CTranslate2 2.17.0 988.0 995MB 27.92
- int16 1285.7 847MB 27.51
- int8 1469.1 847MB 27.71

Executed with 8 threads on a c5.metal Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.

GPU

Tokens per second Max. GPU memory Max. CPU memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.26.1 (with TensorFlow 2.9.0) 1289.3 2667MB 2407MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 2.2.0 (with PyTorch 1.11.0) 1271.4 2993MB 3553MB 26.77
FasterTransformer 4.0 2941.3 5869MB 2327MB 26.77
- float16 6497.4 3917MB 2325MB 26.83
CTranslate2 2.17.0 3644.1 1231MB 646MB 26.77
- int8 5393.6 975MB 522MB 26.83
- float16 5454.7 815MB 550MB 26.78
- int8 + float16 6158.6 687MB 523MB 26.80
OPUS-MT model
Transformers 4.19.2 811.1 4013MB 3044MB 27.92
Marian 1.11.0 2172.9 3127MB 1869MB 27.92
- float16 2722.0 2985MB 1715MB 27.93
CTranslate2 2.17.0 3042.5 1167MB 486MB 27.92
- int8 4573.1 1007MB 511MB 27.89
- float16 4718.4 783MB 552MB 27.85
- int8 + float16 5300.5 687MB 508MB 27.81

Executed with CUDA 11 on a g4dn.xlarge Amazon EC2 instance equipped with a NVIDIA T4 GPU (driver version: 510.47.03).

Additional resources

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ctranslate2-3.6.0-cp311-cp311-win_amd64.whl (17.9 MB view details)

Uploaded CPython 3.11Windows x86-64

ctranslate2-3.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ctranslate2-3.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

ctranslate2-3.6.0-cp311-cp311-macosx_11_0_arm64.whl (862.9 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ctranslate2-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ctranslate2-3.6.0-cp310-cp310-win_amd64.whl (17.9 MB view details)

Uploaded CPython 3.10Windows x86-64

ctranslate2-3.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ctranslate2-3.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

ctranslate2-3.6.0-cp310-cp310-macosx_11_0_arm64.whl (862.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ctranslate2-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ctranslate2-3.6.0-cp39-cp39-win_amd64.whl (17.9 MB view details)

Uploaded CPython 3.9Windows x86-64

ctranslate2-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ctranslate2-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

ctranslate2-3.6.0-cp39-cp39-macosx_11_0_arm64.whl (863.0 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ctranslate2-3.6.0-cp39-cp39-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ctranslate2-3.6.0-cp38-cp38-win_amd64.whl (17.9 MB view details)

Uploaded CPython 3.8Windows x86-64

ctranslate2-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

ctranslate2-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

ctranslate2-3.6.0-cp38-cp38-macosx_11_0_arm64.whl (862.9 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

ctranslate2-3.6.0-cp38-cp38-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

ctranslate2-3.6.0-cp37-cp37m-win_amd64.whl (17.9 MB view details)

Uploaded CPython 3.7mWindows x86-64

ctranslate2-3.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

ctranslate2-3.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

ctranslate2-3.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file ctranslate2-3.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bebce1a9dd8bb845a12fae46fee8e6e0e9b17d02a763b3aa4676b439d21d12e8
MD5 4772d2e048d9c196fc7e87188bcdd1e9
BLAKE2b-256 b433de980ccb494592020b988d4bbcdbe8600cd91260be9dbd3ab85589407565

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ab4490bfa775d66e18dbb69a45491989391aa4de5e8d47bac3c9efd209342a2
MD5 4410426be70db5d7156d19b417f52506
BLAKE2b-256 dba40fc5fbaae578695e0fe68994f1cd9ab3d570b8e4df6f3ff6b8c0d2d7e880

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c8ccd812c52e2e7066603e446b8b0f94ca842aba4e863f61bebb91c24d89f572
MD5 370e08b19573f4f46085f6bc55482c35
BLAKE2b-256 ee9f393ca2d9aadf96cd0f29328c1c6f0c103f517f3af16c6ecd282a3860d552

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d2588798a2d3ed94f1c37d0158176b419e4dc0a3c41d91c1d3f481da648694b
MD5 5039a950a46a2415b425d785306b9808
BLAKE2b-256 4ec9daba27fd0b607f7e30c77d9a1eabcaaebf6a3326ff015c895bd1e48eb576

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 101b8adc0e681979b6d4b7849278b099b15dc37743da468d28aa98fb803f9834
MD5 743c38f721f0eea1d4fddd863538ccac
BLAKE2b-256 05f030ddfaaea5437af5401890201acbb48aa8182eb642ebc85b70ad7ce93216

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eb2b5ab07930c24752d951a9d7a5cfc0f19345d2196fd23723b8dd793e2f778a
MD5 651d555b3ec5158b7b4376f5a0116334
BLAKE2b-256 52a05211b7a586866f3870d0bd60ff86b60d888637b7c0e4660cea80a902b4c0

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f06848bde896e528475e0bbf73bcfe6c9756bae0a83dbfa70bf08ab4a7c38158
MD5 e4827aec986c163da39422728aaca11e
BLAKE2b-256 ecadedaf50daf8d75f9ea13f1ab9b507afae4ad2c54bc22077ad0c9b0568afbc

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 622d1dac2e37d5e8f9a9026886e575db52b53b793e9aafe9bd5732e2ec1479b9
MD5 8ec4979c2e6b2472585d47a91fc87ece
BLAKE2b-256 3fba5938553590dec1eaa1671eb3ef5900a683dd1741ad5d15bd7a3471ee4557

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a8540efb04d6b322de700fe74c3dd67b11ee68ff54c6845f425be6fb046d9ba
MD5 d395b9cf6d56fefb8590902e54a81be9
BLAKE2b-256 0b41335436374acd048d1fe27bb06862d52e90ff09959d39193dfda1d4a0d513

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92a382ab8fe981b7394f70bd0efee3721f60110b83d0f31fb127d12a12d1832a
MD5 6334f6e5c63ef38bfc472592beb2399a
BLAKE2b-256 707196e84f88d19f35c28d3b2c2a2085b36830e67d0b36e2b6da79dd37919d41

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 17.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ctranslate2-3.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 80ca90041c4f7157698c2795ef8d13ca0fff67ce2ef7fa787adbd41312fd7d35
MD5 e56ec69488ebc82f9366a675fd1d775e
BLAKE2b-256 ee80f53714450a41bbe59730db794a6c51ca62a71bf79a91d53808d3f7631466

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b106dab5157b9b386d4ccf08fe96a892b663c1db3f72130f5f22125c39d9593c
MD5 488991f8f79cd9771191f76bf41a8fa0
BLAKE2b-256 c935b0eabb329c1eb35311e04cd59028b2c953007f590e13ae550a408bbbb040

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8475f30a175c9b657b32aa97771ec54e5b604605c3cc61f416187c7fa35a7755
MD5 eefabb493350d01f7fdfdaf2888d5639
BLAKE2b-256 13f2e27a87e5f1ae5bc6f62ed3756537f2c5a8abab2a1451c4ab8b88060b0af2

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 778e997df42a41f3b976c2035e8d0330979ebb77b895194f6511dfdc78854cfd
MD5 73d693470e46d3dc4b3dc25f5a4dc882
BLAKE2b-256 5bdf74aac874c8cf3bec86d0f91adb2d7d8b8e5921fd5970f6f6b42ac9b480e2

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 add46b8968569a7437fb350dd40e1a806ca791d31d77bbbe0aa10f828b13590b
MD5 bc279d57a40d3c06b46b71360e95f445
BLAKE2b-256 85e09400a3882af576c023b06d6f067ccc87c36e0b1f010c06676e5be8034123

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 17.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ctranslate2-3.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 59d1a75ba23f230b247e56fb9b750e8f945bef7c8246593c4013d2f4527aeb77
MD5 1b64d4fba426ce0b5a8e7f3108aef769
BLAKE2b-256 712a0e4a8b82c4d93147632b71433e780b5624f746654bdbd0703d8732ae27f5

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 728516e3f6624250ac738d14c19c880c15e94ddb1cfb06915e1fe484f3a0bd26
MD5 a48a5a023b103d68c88b7636c46bbe3b
BLAKE2b-256 4002beb98f0aa6fd3071eecfb2443b8fe5e1b4fcae42c91a0f693885894c45b8

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ebc6cf5c4f06ce397903486f0c6492d9db034cd8195f4652afc6e5053f66f415
MD5 a200c9c28434bbca71a84f3165801e07
BLAKE2b-256 41fb758069a6d6c1258936ac35032ea1eaba353116eaee01a84f8c3ce2c1a11c

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0738b780b1d8ac23d32e9246ae0cc1338ddb36392b28c0276da0c32e0ba9bce0
MD5 6c8869c9651e87332cfa0918752a48fb
BLAKE2b-256 1996b51ae9c21b6621627de84b46562c613e542cb51023f2eba8ed7d18120501

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9848974379bd871df9900841be80fc1e58aed5dc8c21287884544ebcf1a1fe39
MD5 a4bd8719dd885bba2c8f4ad0fd993d7e
BLAKE2b-256 343fc63c602b36d5e9f40d296cf68ebc97520674726a462c146e9cc0ab3f35ad

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 17.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ctranslate2-3.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b97cfa61e790787e38e22b2df2bad3c3cbdefe97a0cea13afa0983f6782c634e
MD5 ea6d0527439d568a65919a966e3c8a1a
BLAKE2b-256 448d43c1f9aa12a320cfa4a9761f8b805780446be8cf8c510aa1da81d2802221

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53f6037fdffa5ea0fe94905ee06f7e9fa4267c4b91e1cfb07fbec9abce5e47bd
MD5 090cd23992321c8b8a0caab9e8143d6c
BLAKE2b-256 1be4706b47c26c44cd36e65fec51443a08d047c0731f8e1536f815ce5fd6e499

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 732204e9940fae26d348eeb09fcea87b4a8aea7f43e150a360349392e7445562
MD5 379f335e609160e32b26d9eef1f16f8b
BLAKE2b-256 248751f2eaa6b7b646fd190de1966d5c0461c73432a08840df9a68093bce3e10

See more details on using hashes here.

File details

Details for the file ctranslate2-3.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22449778255bcbdc00a86f6c7cafdf3d8e089ddce7e0f822a42e2fc91f2239a8
MD5 e927d6eb34e715f7709f79fa8ee40b6c
BLAKE2b-256 d6527640ea712f0c7407d5c5ed63bfd7076baa077c0531907b69232999f7e3fd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page