Skip to main content

Fast inference engine for Transformer models

Project description

CI PyPI version Documentation Gitter Forum

CTranslate2

CTranslate2 is a C++ and Python library for efficient inference with Transformer models.

The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU.

The following model types are currently supported:

  • Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, T5, Whisper
  • Decoder-only models: GPT-2, GPT-J, GPT-NeoX, OPT, BLOOM, MPT, Llama, Mistral, CodeGen, GPTBigCode, Falcon
  • Encoder-only models: BERT, DistilBERT, XLM-RoBERTa

Compatible models should be first converted into an optimized model format. The library includes converters for multiple frameworks:

The project is production-oriented and comes with backward compatibility guarantees, but it also includes experimental features related to model compression and inference acceleration.

Key features

  • Fast and efficient execution on CPU and GPU
    The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc.
  • Quantization and reduced precision
    The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit brain floating points (BF16), 16-bit integers (INT16), and 8-bit integers (INT8).
  • Multiple CPU architectures support
    The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
  • Automatic CPU detection and code dispatch
    One binary can include multiple backends (e.g. Intel MKL and oneDNN) and instruction set architectures (e.g. AVX, AVX2) that are automatically selected at runtime based on the CPU information.
  • Parallel and asynchronous execution
    Multiple batches can be processed in parallel and asynchronously using multiple GPUs or CPU cores.
  • Dynamic memory usage
    The memory usage changes dynamically depending on the request size while still meeting performance requirements thanks to caching allocators on both CPU and GPU.
  • Lightweight on disk
    Quantization can make the models 4 times smaller on disk with minimal accuracy loss.
  • Simple integration
    The project has few dependencies and exposes simple APIs in Python and C++ to cover most integration needs.
  • Configurable and interactive decoding
    Advanced decoding features allow autocompleting a partial sequence and returning alternatives at a specific location in the sequence.

Some of these features are difficult to achieve with standard deep learning frameworks and are the motivation for this project.

Installation and usage

CTranslate2 can be installed with pip:

pip install ctranslate2

The Python module is used to convert models and can translate or generate text with few lines of code:

translator = ctranslate2.Translator(translation_model_path)
translator.translate_batch(tokens)

generator = ctranslate2.Generator(generation_model_path)
generator.generate_batch(start_tokens)

See the documentation for more information and examples.

Benchmarks

We translate the En->De test set newstest2014 with multiple models:

  • OpenNMT-tf WMT14: a base Transformer trained with OpenNMT-tf on the WMT14 dataset (4.5M lines)
  • OpenNMT-py WMT14: a base Transformer trained with OpenNMT-py on the WMT14 dataset (4.5M lines)
  • OPUS-MT: a base Transformer trained with Marian on all OPUS data available on 2020-02-26 (81.9M lines)

The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers.

Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings.

CPU

Tokens per second Max. memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.31.0 (with TensorFlow 2.11.0) 209.2 2653MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 3.0.4 (with PyTorch 1.13.1) 275.8 2012MB 26.77
- int8 323.3 1359MB 26.72
CTranslate2 3.6.0 658.8 849MB 26.77
- int16 733.0 672MB 26.82
- int8 860.2 529MB 26.78
- int8 + vmap 1126.2 598MB 26.64
OPUS-MT model
Transformers 4.26.1 (with PyTorch 1.13.1) 147.3 2332MB 27.90
Marian 1.11.0 344.5 7605MB 27.93
- int16 330.2 5901MB 27.65
- int8 355.8 4763MB 27.27
CTranslate2 3.6.0 525.0 721MB 27.92
- int16 596.1 660MB 27.53
- int8 696.1 516MB 27.65

Executed with 4 threads on a c5.2xlarge Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.

GPU

Tokens per second Max. GPU memory Max. CPU memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.31.0 (with TensorFlow 2.11.0) 1483.5 3031MB 3122MB 26.94
OpenNMT-py WMT14 model
OpenNMT-py 3.0.4 (with PyTorch 1.13.1) 1795.2 2973MB 3099MB 26.77
FasterTransformer 5.3 6979.0 2402MB 1131MB 26.77
- float16 8592.5 1360MB 1135MB 26.80
CTranslate2 3.6.0 6634.7 1261MB 953MB 26.77
- int8 8567.2 1005MB 807MB 26.85
- float16 10990.7 941MB 807MB 26.77
- int8 + float16 8725.4 813MB 800MB 26.83
OPUS-MT model
Transformers 4.26.1 (with PyTorch 1.13.1) 1022.9 4097MB 2109MB 27.90
Marian 1.11.0 3241.0 3381MB 2156MB 27.92
- float16 3962.4 3239MB 1976MB 27.94
CTranslate2 3.6.0 5876.4 1197MB 754MB 27.92
- int8 7521.9 1005MB 792MB 27.79
- float16 9296.7 909MB 814MB 27.90
- int8 + float16 8362.7 813MB 766MB 27.90

Executed with CUDA 11 on a g5.xlarge Amazon EC2 instance equipped with a NVIDIA A10G GPU (driver version: 510.47.03).

Additional resources

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ctranslate2-3.24.0-cp312-cp312-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.12Windows x86-64

ctranslate2-3.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

ctranslate2-3.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

ctranslate2-3.24.0-cp312-cp312-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

ctranslate2-3.24.0-cp312-cp312-macosx_10_9_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

ctranslate2-3.24.0-cp311-cp311-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.11Windows x86-64

ctranslate2-3.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ctranslate2-3.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

ctranslate2-3.24.0-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ctranslate2-3.24.0-cp311-cp311-macosx_10_9_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ctranslate2-3.24.0-cp310-cp310-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.10Windows x86-64

ctranslate2-3.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ctranslate2-3.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

ctranslate2-3.24.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ctranslate2-3.24.0-cp310-cp310-macosx_10_9_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ctranslate2-3.24.0-cp39-cp39-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.9Windows x86-64

ctranslate2-3.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ctranslate2-3.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

ctranslate2-3.24.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ctranslate2-3.24.0-cp39-cp39-macosx_10_9_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ctranslate2-3.24.0-cp38-cp38-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.8Windows x86-64

ctranslate2-3.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

ctranslate2-3.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

ctranslate2-3.24.0-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

ctranslate2-3.24.0-cp38-cp38-macosx_10_9_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file ctranslate2-3.24.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8608d290b651b7c9dd007806493d56744697fbfaf1f4e89082805bb0f8179357
MD5 329ca2cefe5b228edc12982c8f1f6068
BLAKE2b-256 5cff75535fc8bf1f341e9e504b879072caf1d70920735fb3117b669fa2911a69

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba272a681974f7405f5c16e99303746fdb27c9c2cab4a65f17bfe9408fe22418
MD5 db8107f5e11eaa18df6a0921b1a0e9fe
BLAKE2b-256 d52998d6d3504e7069139f9a67b67b3fca5a2543053f7d19e27362a18091b783

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0206b791feed6450e172683c117213ed8a1279b9e8067012475f48fcc18df8b8
MD5 8156371c4bdf244b5dc7ec002fee5c85
BLAKE2b-256 2712b88498171a858f9a4af355f722a539592ec19da0cac84281e7635cec4525

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f564d0b678e29413c3446380faa4568fd346597bb13e4436fa479cce1a151fd
MD5 47a3ae3bfdfa7ef5f1dee087fa44b9e5
BLAKE2b-256 0bc428850ccbebcf2d7d498a2ad0f3d7efdb3826ef9cb88765d400d99207cf29

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1c91a2c7cccb84facd3316496660c89e7116840aee6dd3be1111721f377e07a6
MD5 381cbbdb94ee3d35bf8aa0c5083bd7c2
BLAKE2b-256 975fdbe13ca66066391a2efb775bc1abc366c1547a5d615c422771052c8b7841

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bb54d91826c3de21fda5784661e732fdfb4da6d877e8495b87b2bb7ed6f88123
MD5 ef67195ab69ebc4a1ae62fbe416117ac
BLAKE2b-256 54bea55bbeb04e7f3b119b64a76d2644f3548e9fec83733eadc46b9a970d342e

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17f8a67684404a776cd2961ff98a6aa0b2fe0ec0488b58d903df3ae1cb6136f3
MD5 13e79b2c7e0d0893d47ec4b1f2d54c4a
BLAKE2b-256 f2532c20e1ab3a92e615585ddddb98a3a76637bc664be6e3a5123566e2b23677

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c950c4a832a88109b63995566849debceb3226573047764998ffd8b60c9f635
MD5 05062ebf5ce6abf70181803c93331bba
BLAKE2b-256 ec399a6cb37f2b5477e4550b5c17619a0a5fff37e3b32f801aa14c57dfc5db86

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7c1498dcd42b01743969f3aaef5165d4969d80e969c9571fe9aa78c33c2f89b
MD5 aba00a936e69e8e30bb4c12f01a3931d
BLAKE2b-256 83c2c5c5d9874ce55d2d5edfac466f6043eb6c22da1190931961611208b47a24

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5407bc1ea857030b86b3d29ecd60cf29949aabfd918c08ea334c9ae5360caeab
MD5 23498b8631d46dab33b80c8ec9ae5c42
BLAKE2b-256 5bc6f695e6d318043bdbf66627098fe5b03e5c93a9f7558c5f81ddaa633578d3

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d972c229613220d33eb5faabb35c1e063eab885da6264c693aa01d53ad9c5af2
MD5 8de475c5c137b5ac8c305a3379789101
BLAKE2b-256 ef0f6f03d02cff98b10c6f3a2ecd74d691e0930c9598d816bf67f98f44b02500

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f66ccf4786be75e5c5244c5f2e4b004bb43dfe8195cf4255233f711099b3d17
MD5 27f8f90c6edc62a66faa3ab62e6b1d46
BLAKE2b-256 9f73a46296b333b7facf60a9ebeb3d72840c52db62e34db037520cb5e452ed10

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c25de97fa3ad814845628b8f9fda9931a4e0c8f85731d67eb06a14b21eb0b95
MD5 214aedf474dde8639f140cf677043bb1
BLAKE2b-256 e930631a65adf5f9a180988e24c7817d70785aae0ff9529ee769e013a0b2ef8b

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf8a85f6b4be1789330ae6d04b954a72a418a097d4bb1d42f0a071d29427a27d
MD5 3562b3676a156c0ae420bef9e97e6e9d
BLAKE2b-256 4be7a38571d9821f85f965e67bb41e8206cfc0d4db644c76df6a28fe30174833

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d31fecdc502ea4759313121bd39a6a3e3cd3cbe7e255e133170b040b0d07e61
MD5 9063306faea9f6ac2c59deb848892c11
BLAKE2b-256 0e76a7a38b2136e8414f1fc183fa5679f458a382899b7319881b39a43ec1fee7

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.24.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for ctranslate2-3.24.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 db3cc618b42462b5dc199e60f2f705da0c95c0523c5221059d35e64818b23644
MD5 1f42289ce8f57b96eba80c44169c4f46
BLAKE2b-256 cc68810422f77b24a626b579222ba68a1cef3ce15a116b95adce8a5a9ca2189f

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40675f49bc433b3fb00594806b8e9eb83b78782f17f5a5d08caf360c441fcccc
MD5 53dda8cac52535d20e724f1f0dd7c77b
BLAKE2b-256 f75733676ac5dad997864ed931441540844f1e8ac269ac9e46ec96796048cc98

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a8ee1541b9ce69c5eebe0f62f34b96c221fa2aed9606b3d824441f8496091b03
MD5 f6f00edeff1ef8dc811ceedede9c4403
BLAKE2b-256 92d02b14eba3af6b17fe8f1fa07e8d1695f8bdb23ad7794651912005080ee696

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c91879cd905aa26882708f833e8d3ac24e3622529b62aef5958fa1db4e84bb13
MD5 6729425d5fa6fa34e888cdd93df539b9
BLAKE2b-256 d4ea111ef21542165dbd96de0e240f62cdadc579ee6ce024729e884df3532ff6

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd63fbd3e689e815aef33cb3a7813cfa83f8da3f33b5af4c3c7663247c524870
MD5 ded34a24cae051a27a86e6f8bc7ce931
BLAKE2b-256 9669ad94943539737a5233959cfab8040665fb7f0689374508920467af083c73

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.24.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for ctranslate2-3.24.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1649f92a65f760f010ebad79b6351063357d3d5c10d4690d664f02ad0166f215
MD5 4e30f21e81f75b7a3bfff186fa34a3f7
BLAKE2b-256 23c9557c69df7c38c11156e46edde77b9e21eb73c542d68c0cd71660ff5ad829

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c8bab6f09d395851e626f276ccdcb89153c4e6c11ff0d1f4fce3513d3b1da0b
MD5 42d7b00d78f92f95d906c799321425b4
BLAKE2b-256 f9bae4ee0c4f580dd351dff65fb42338f78f99f638c2e6ef9329146407676d60

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f6152b7850fde769444b31d47be464b628fb08927a0d90b2f12582b415dd69a
MD5 5a817182599ed643945e917f017cd7c0
BLAKE2b-256 bb64ac872e08c4f6225e97211272d62a0ab0e705f805dea39e57aa92482553df

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bab89046323c61f3ad3ab7b03523ecb32d7ead43df9bd2441daf75613fce8cc4
MD5 0537d9539d517351cf110dc61d410ba6
BLAKE2b-256 bbfbebe2b6624d964d9e11d20a2cd8c60586a0f68b682b0d34e22eb2eb698202

See more details on using hashes here.

File details

Details for the file ctranslate2-3.24.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.24.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79d4048c30f81d6fa4b657f0b5d064e1e9470994b055caef1890e13ef9d97703
MD5 3af15d00c1185ce6cea93b5d83c2f0cf
BLAKE2b-256 6d379b0ce1feb19a4f6ad7145f36684e286b5e89c93b0ad01e5c3499a8c170e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page