Skip to main content

Fast inference engine for Transformer models

Project description

CI PyPI version Documentation Gitter Forum

CTranslate2

CTranslate2 is a C++ and Python library for efficient inference with Transformer models.

The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The following model types are currently supported:

  • Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, T5, Whisper
  • Decoder-only models: GPT-2, OPT

Compatible models should be first converted into an optimized model format. The library includes converters for multiple frameworks:

The project is production-oriented and comes with backward compatibility guarantees, but it also includes experimental features related to model compression and inference acceleration.

Key features

  • Fast and efficient execution on CPU and GPU
    The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc.
  • Quantization and reduced precision
    The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit integers (INT16), and 8-bit integers (INT8).
  • Multiple CPU architectures support
    The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
  • Automatic CPU detection and code dispatch
    One binary can include multiple backends (e.g. Intel MKL and oneDNN) and instruction set architectures (e.g. AVX, AVX2) that are automatically selected at runtime based on the CPU information.
  • Parallel and asynchronous execution
    Multiple batches can be processed in parallel and asynchronously using multiple GPUs or CPU cores.
  • Dynamic memory usage
    The memory usage changes dynamically depending on the request size while still meeting performance requirements thanks to caching allocators on both CPU and GPU.
  • Lightweight on disk
    Quantization can make the models 4 times smaller on disk with minimal accuracy loss.
  • Simple integration
    The project has few dependencies and exposes simple APIs in Python and C++ to cover most integration needs.
  • Configurable and interactive decoding
    Advanced decoding features allow autocompleting a partial sequence and returning alternatives at a specific location in the sequence.

Some of these features are difficult to achieve with standard deep learning frameworks and are the motivation for this project.

Installation and usage

CTranslate2 can be installed with pip:

pip install ctranslate2

The Python module is used to convert models and can translate or generate text with few lines of code:

translator = ctranslate2.Translator(translation_model_path)
translator.translate_batch(tokens)

generator = ctranslate2.Generator(generation_model_path)
generator.generate_batch(start_tokens)

See the documentation for more information and examples.

Benchmarks

We translate the En->De test set newstest2014 with multiple models:

  • OpenNMT-tf WMT14: a base Transformer trained with OpenNMT-tf on the WMT14 dataset (4.5M lines)
  • OpenNMT-py WMT14: a base Transformer trained with OpenNMT-py on the WMT14 dataset (4.5M lines)
  • OPUS-MT: a base Transformer trained with Marian on all OPUS data available on 2020-02-26 (81.9M lines)

The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers.

Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings.

CPU

Tokens per second Max. memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.26.1 (with TensorFlow 2.9.0) 283.0 3475MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 2.2.0 (with PyTorch 1.11.0) 474.2 1543MB 26.77
- int8 510.6 1455MB 26.72
CTranslate2 2.17.0 1220.2 1072MB 26.77
- int16 1534.8 920MB 26.82
- int8 1737.5 771MB 26.89
- int8 + vmap 2122.4 666MB 26.62
OPUS-MT model
Transformers 4.19.2 230.1 2840MB 27.92
Marian 1.11.0 756.6 13819MB 27.93
- int16 718.4 10395MB 27.65
- int8 853.3 8166MB 27.27
CTranslate2 2.17.0 988.0 995MB 27.92
- int16 1285.7 847MB 27.51
- int8 1469.1 847MB 27.71

Executed with 8 threads on a c5.metal Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.

GPU

Tokens per second Max. GPU memory Max. CPU memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.26.1 (with TensorFlow 2.9.0) 1289.3 2667MB 2407MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 2.2.0 (with PyTorch 1.11.0) 1271.4 2993MB 3553MB 26.77
FasterTransformer 4.0 2941.3 5869MB 2327MB 26.77
- float16 6497.4 3917MB 2325MB 26.83
CTranslate2 2.17.0 3644.1 1231MB 646MB 26.77
- int8 5393.6 975MB 522MB 26.83
- float16 5454.7 815MB 550MB 26.78
- int8 + float16 6158.6 687MB 523MB 26.80
OPUS-MT model
Transformers 4.19.2 811.1 4013MB 3044MB 27.92
Marian 1.11.0 2172.9 3127MB 1869MB 27.92
- float16 2722.0 2985MB 1715MB 27.93
CTranslate2 2.17.0 3042.5 1167MB 486MB 27.92
- int8 4573.1 1007MB 511MB 27.89
- float16 4718.4 783MB 552MB 27.85
- int8 + float16 5300.5 687MB 508MB 27.81

Executed with CUDA 11 on a g4dn.xlarge Amazon EC2 instance equipped with a NVIDIA T4 GPU (driver version: 510.47.03).

Additional resources

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ctranslate2-3.3.0-cp311-cp311-win_amd64.whl (16.3 MB view details)

Uploaded CPython 3.11Windows x86-64

ctranslate2-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ctranslate2-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

ctranslate2-3.3.0-cp311-cp311-macosx_11_0_arm64.whl (854.9 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ctranslate2-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ctranslate2-3.3.0-cp310-cp310-win_amd64.whl (16.3 MB view details)

Uploaded CPython 3.10Windows x86-64

ctranslate2-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ctranslate2-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

ctranslate2-3.3.0-cp310-cp310-macosx_11_0_arm64.whl (854.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ctranslate2-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ctranslate2-3.3.0-cp39-cp39-win_amd64.whl (16.3 MB view details)

Uploaded CPython 3.9Windows x86-64

ctranslate2-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ctranslate2-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

ctranslate2-3.3.0-cp39-cp39-macosx_11_0_arm64.whl (855.0 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ctranslate2-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ctranslate2-3.3.0-cp38-cp38-win_amd64.whl (16.3 MB view details)

Uploaded CPython 3.8Windows x86-64

ctranslate2-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

ctranslate2-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

ctranslate2-3.3.0-cp38-cp38-macosx_11_0_arm64.whl (854.8 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

ctranslate2-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

ctranslate2-3.3.0-cp37-cp37m-win_amd64.whl (16.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

ctranslate2-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

ctranslate2-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

ctranslate2-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file ctranslate2-3.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 458ad332156370c5c32902d3b79ff0fc780c944b7e7a74c8be9f944777115c03
MD5 ee7e2c82707108a14292fdcdeb6fa976
BLAKE2b-256 47be421e20d1f6af38620a6cad3b4927e331ffdec0dae333dc43e6bd92f2f007

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e724226731b4c40c183d859c259dc82a5edac967f9f845966abbe2b4fd1d4da4
MD5 f6f08dc4a100b71413f3e5dea302861a
BLAKE2b-256 f33a059e7bdcc5689389aa9faea3f665756b1cddcd6aa69ccc812cd1214a9692

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e2c14fbae4b719afb519ef808154de263c8e8a0e3fb0a2a0a5c43ef3996b49f1
MD5 bee3d56c92b94729e075dd9db80517e8
BLAKE2b-256 1f310c0acf5452b79b3eca86621d81847d929b13c7263a8695369edd49cba39d

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 552aaef38c8e570541d6035c2078245aad8a6163ceb7b943bafe8eded77f840b
MD5 d0c076761be618a2016b00e6d6b5033a
BLAKE2b-256 08a344a48707221bae50ec2a98cb3527f2cd0bae0642dee47a61d511082bf1a7

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc046c7e4fc1e7ae159bb0ed090b5c876d52de787028890386d3d7d1fa845ad2
MD5 967cebc4f7c7a7daedd619d44a4487e9
BLAKE2b-256 eeea8be8cae1f7b14b5a2a42c875e13eda2e3d350bf72691bf840a04822fb57b

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2bdc2e3f6b02afc96484366095aeaa0314ee5d0ce57e0187c8981b0c7c36390f
MD5 f661ea77e909926320cf4b450acaeb26
BLAKE2b-256 afc759f3e6ff710daf7c3e2c40b373ac2007c26def109bb202979e7330d63ecb

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9db280c8051f8e6d8df989f9e386f94441060f2a360bbee63d692600d4af9a7
MD5 65cf876e9bcbbe8409b61a450e9a0366
BLAKE2b-256 12dca5287240893a52571e18176c3de396776d7d47df7f676e3fd173bde4207b

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e83de568138ea48266cae609f5e9733da852756f850ce85e4a29756c9ae4068f
MD5 b5f60800c6007a1a83f3c1214a6e012d
BLAKE2b-256 2dde2600727bd8bdff84652dd2ddcd84cd21f43291ebbfff6551a47734274ca5

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 052ca1592c47a8ba5e85b5d7f3bcb0f3b24c7636a552443ca32ac935c26dd3e3
MD5 99184010788ab2329f9f1dc343d6db0c
BLAKE2b-256 7290e59f713e8200a294fdce7c94872029e0340100e0dad1a26d3138476fd283

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53820ac38970d515be0edcb887ee67b7a524894c29a19ca536280e4074fda1ae
MD5 9086325931b2e00dfd46bfe8921c74be
BLAKE2b-256 83b0da210da5fb3d3ad27b4bd53ebda87fe6d84905cd5b188185fb9847cb8d75

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for ctranslate2-3.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0e3afa942ee63851f94c5ab6b8e0225a44bca9856a7148bfc747d5ee02c6e06e
MD5 d91735fdd634809ebf9c7bf4ffbda361
BLAKE2b-256 20ba9960b1aa4c64dbb63f9da6582b322b33ab309a9592a3231eb372b8377862

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7d03fcb25ae82b4e78e2833c1f8437f28cceea58d976182c7a3472d806579ed
MD5 0cc57e2e216b4e2829a5c530dd95d2ab
BLAKE2b-256 d8337debfceee2c044927ee069a4047fc455650f98cae023b588dc50e58b1e8f

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a9a267f6616b6762dfd81e76293ffbe9e626bb2bc410913420a64809b3202d2e
MD5 a91f9b92a1960a1167364a0295495351
BLAKE2b-256 898e9378e8304ac3c1d5e41ea5f078b05ccdbba5e5b78b9104f9cf1fb5295227

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e37faf2ad885abda63bb18636d2e71fc5a489471e540174d6556257c7db4ad0d
MD5 6c0ad6596fb182079351a5715f82d8fb
BLAKE2b-256 03eca18b6cc5d031f6b94d63379b61faee766328c5729d906a4ae49c4afec0aa

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5905b7bd49e48849e0d1b4c48d4b16ce52d029f2225d84b03d92cfeaac72e562
MD5 615ffac9a0e841c42c52bdf2131e64ae
BLAKE2b-256 6e559171c143e7f3a903cb8e991b77538858aa0c340003d1db03cefd93f9febd

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for ctranslate2-3.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bcfe91b9ad73d5b74f20ae64869bc6a24591a72b9cbbdf1ea2b9cd968a9137e9
MD5 991b4fef9a71aabede4e08cdb8c87e86
BLAKE2b-256 7a8610874fba29887aac6184b681d70bb5c842cc560bfa800973ea41fc76dda4

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54a9abd0f7249b2e1d955d9fa5ebfd1ba01f195d1d64570ef4ab87ae74ff926c
MD5 14375ea1f051901a23d0ce5f44949686
BLAKE2b-256 feed2c94919680147ad6bb2a7ff22c1d2385554a10c5d972a5ca523ee0e105fc

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73ce249fb20f10da6bff525f9b1a7b8d03ef4295627d930fe1508efb8e2133ba
MD5 bbd52f769b1b0d6374e7504e316af8fa
BLAKE2b-256 30d2abf37c846fe468273f9078b9f1b5d2571453beb90cab5189ea7e5e97f491

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64bce01a6eadf21caa2a5545b84bb4144137e009e9463d24c5ae74959d93a54d
MD5 4f86800d197eaa02eee08e81346e47ee
BLAKE2b-256 b18b006a30a77679a38c606002ea6159ff86ca13311e710d271d6b063acb1ed6

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e48acaa5c2f117b481d9e968bd624978942c0f5b100b5bede3df6e9b591d1b56
MD5 e426b772f0dd0b31ab348de78408df3a
BLAKE2b-256 e0b28cf40f5c12cfe7d8b2271955f503d2a51206e10089a9ea7434a3169bb966

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for ctranslate2-3.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a573182fabd53524575fd862e74f57068fe6d1c07f53edc46b94faf8eb935302
MD5 333b64fc7104c91bbe6e1062a0fa0b0e
BLAKE2b-256 20c7c6f43ec33109dd7723f9336ba82df1f9014b30b55ff7f8f873d5d9f1e06f

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 751db75f3359e6430ff1b9970e8d5f123e9759cfa8dfe12e50eb8d0d0e6ba41a
MD5 6542ea95cc6c9b04689a6e65c7f8b887
BLAKE2b-256 1c525a94f897bcc611984c4285d76d3ffa11eaabaadc1e88a19f6a0cf44efbcc

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf1b019cc5d9a278a35ca236fc6cb2f7c8281f6f33c74410330f2df0d453fc97
MD5 af71ccca6740181a4ebca2a072801824
BLAKE2b-256 2766cac321aca77d38afaae91a82451b8d55976099750542b9eda86dfb516ea7

See more details on using hashes here.

File details

Details for the file ctranslate2-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 498c1da9dbbfa29cbb58756cf16206e0262118f92b7fd2583f4839ff516228bb
MD5 dfb754a45f52e974fa67c332a3081ab3
BLAKE2b-256 4bb0120b975212bab3a14fc09cb22d99b18c7389a9779d74c339655b30a2b1ea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page