Skip to main content

Fast inference engine for Transformer models

Project description

CI PyPI version Documentation Gitter Forum

CTranslate2

CTranslate2 is a C++ and Python library for efficient inference with Transformer models.

The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The following model types are currently supported:

  • Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, Whisper
  • Decoder-only models: GPT-2, OPT

Compatible models should be first converted into an optimized model format. The library includes converters for multiple frameworks:

The project is production-oriented and comes with backward compatibility guarantees, but it also includes experimental features related to model compression and inference acceleration.

Key features

  • Fast and efficient execution on CPU and GPU
    The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc.
  • Quantization and reduced precision
    The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit integers (INT16), and 8-bit integers (INT8).
  • Multiple CPU architectures support
    The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
  • Automatic CPU detection and code dispatch
    One binary can include multiple backends (e.g. Intel MKL and oneDNN) and instruction set architectures (e.g. AVX, AVX2) that are automatically selected at runtime based on the CPU information.
  • Parallel and asynchronous execution
    Multiple batches can be processed in parallel and asynchronously using multiple GPUs or CPU cores.
  • Dynamic memory usage
    The memory usage changes dynamically depending on the request size while still meeting performance requirements thanks to caching allocators on both CPU and GPU.
  • Lightweight on disk
    Quantization can make the models 4 times smaller on disk with minimal accuracy loss. A full featured Docker image supporting GPU and CPU requires less than 500MB (with CUDA 10.0).
  • Simple integration
    The project has few dependencies and exposes simple APIs in Python and C++ to cover most integration needs.
  • Configurable and interactive decoding
    Advanced decoding features allow autocompleting a partial sequence and returning alternatives at a specific location in the sequence.

Some of these features are difficult to achieve with standard deep learning frameworks and are the motivation for this project.

Installation and usage

CTranslate2 can be installed with pip:

pip install ctranslate2

The Python module is used to convert models and can translate or generate text with few lines of code:

translator = ctranslate2.Translator(translation_model_path)
translator.translate_batch(tokens)

generator = ctranslate2.Generator(generation_model_path)
generator.generate_batch(start_tokens)

See the documentation for more information and examples.

Benchmarks

We translate the En->De test set newstest2014 with multiple models:

  • OpenNMT-tf WMT14: a base Transformer trained with OpenNMT-tf on the WMT14 dataset (4.5M lines)
  • OpenNMT-py WMT14: a base Transformer trained with OpenNMT-py on the WMT14 dataset (4.5M lines)
  • OPUS-MT: a base Transformer trained with Marian on all OPUS data available on 2020-02-26 (81.9M lines)

The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers.

Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings.

CPU

Tokens per second Max. memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.26.1 (with TensorFlow 2.9.0) 283.0 3475MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 2.2.0 (with PyTorch 1.11.0) 474.2 1543MB 26.77
- int8 510.6 1455MB 26.72
CTranslate2 2.17.0 1220.2 1072MB 26.77
- int16 1534.8 920MB 26.82
- int8 1737.5 771MB 26.89
- int8 + vmap 2122.4 666MB 26.62
OPUS-MT model
Transformers 4.19.2 230.1 2840MB 27.92
Marian 1.11.0 756.6 13819MB 27.93
- int16 718.4 10395MB 27.65
- int8 853.3 8166MB 27.27
CTranslate2 2.17.0 988.0 995MB 27.92
- int16 1285.7 847MB 27.51
- int8 1469.1 847MB 27.71

Executed with 8 threads on a c5.metal Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.

GPU

Tokens per second Max. GPU memory Max. CPU memory BLEU
OpenNMT-tf WMT14 model
OpenNMT-tf 2.26.1 (with TensorFlow 2.9.0) 1289.3 2667MB 2407MB 26.93
OpenNMT-py WMT14 model
OpenNMT-py 2.2.0 (with PyTorch 1.11.0) 1271.4 2993MB 3553MB 26.77
FasterTransformer 4.0 2941.3 5869MB 2327MB 26.77
- float16 6497.4 3917MB 2325MB 26.83
CTranslate2 2.17.0 3644.1 1231MB 646MB 26.77
- int8 5393.6 975MB 522MB 26.83
- float16 5454.7 815MB 550MB 26.78
- int8 + float16 6158.6 687MB 523MB 26.80
OPUS-MT model
Transformers 4.19.2 811.1 4013MB 3044MB 27.92
Marian 1.11.0 2172.9 3127MB 1869MB 27.92
- float16 2722.0 2985MB 1715MB 27.93
CTranslate2 2.17.0 3042.5 1167MB 486MB 27.92
- int8 4573.1 1007MB 511MB 27.89
- float16 4718.4 783MB 552MB 27.85
- int8 + float16 5300.5 687MB 508MB 27.81

Executed with CUDA 11 on a g4dn.xlarge Amazon EC2 instance equipped with a NVIDIA T4 GPU (driver version: 510.47.03).

Additional resources

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ctranslate2-3.0.2-cp311-cp311-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.11Windows x86-64

ctranslate2-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (28.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ctranslate2-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

ctranslate2-3.0.2-cp311-cp311-macosx_11_0_arm64.whl (775.4 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ctranslate2-3.0.2-cp311-cp311-macosx_10_9_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ctranslate2-3.0.2-cp310-cp310-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.10Windows x86-64

ctranslate2-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (28.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ctranslate2-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

ctranslate2-3.0.2-cp310-cp310-macosx_11_0_arm64.whl (775.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ctranslate2-3.0.2-cp310-cp310-macosx_10_9_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ctranslate2-3.0.2-cp39-cp39-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.9Windows x86-64

ctranslate2-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (28.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ctranslate2-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

ctranslate2-3.0.2-cp39-cp39-macosx_11_0_arm64.whl (775.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ctranslate2-3.0.2-cp39-cp39-macosx_10_9_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ctranslate2-3.0.2-cp38-cp38-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.8Windows x86-64

ctranslate2-3.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (28.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

ctranslate2-3.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

ctranslate2-3.0.2-cp38-cp38-macosx_11_0_arm64.whl (775.3 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

ctranslate2-3.0.2-cp38-cp38-macosx_10_9_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

ctranslate2-3.0.2-cp37-cp37m-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.7mWindows x86-64

ctranslate2-3.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

ctranslate2-3.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

ctranslate2-3.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file ctranslate2-3.0.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5dbd6e5961d1625442bf120b81af83e38ba5f8a33a0fc022ee129a363bdb219a
MD5 2d8207a4468bc520b523c40120207280
BLAKE2b-256 3fdc39c7eae5825d2191bc3e04ba01b2cf004d97d886ab2f1d650855857f63e7

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdbcc3f33e4dc8a77111c86fbb7ebc4a83d191f78fff3eb87173b52be25dad4f
MD5 e8983f893fa38afc2c44a71dbdbac628
BLAKE2b-256 410940f137d6e976f90417da4f3a243d1533d0b68190bbe0cc729566104c8e5a

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc0cf107f1328cb14cc1c916113a7fb74992f9446de7e14ae05fcb22f45e3150
MD5 8a9ebe68f888d33ba318ed19a42fc5ad
BLAKE2b-256 693768979dfeae6c34ff36b06aeddb8e191685df529f90d03b086fc19257a43d

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f401edaeb87745e3603a40ab7e68b30a2747f3e1efe7feaaeef3450d000334c0
MD5 72c634e795bc0405d7dc24e4e06f43b7
BLAKE2b-256 5b8c7640ceda4b558265ddf1117bc03e19e4dd8d8ab3633d00ae1705f60e5ded

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66ed93bb2f5e2069da2f0130c5def0365d2564f533579b0bf6df7d5974fd0af7
MD5 3a6188b673b4fd0812db6eca5c8da8e5
BLAKE2b-256 c79b2f65ff78069f175e6d031f4ad339dfc76eecf58260719c1c68b6d4af0ec8

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1710278c3e6812caeae1e812b9403aeeb8ffe7f3cadc564b72f67d1c645388ea
MD5 3c8c38f911824effde1a196a583dc809
BLAKE2b-256 34a5f07268baabc5a9cadb083082306349e611d7f73e27cb9e228ea53ab4cf46

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9d880411b0f04564ddc33f1d711744fee1818fe7b1740e53af2e839238a7e65
MD5 0287086f7ca722dce0f7f5c6399a5f54
BLAKE2b-256 2f086d9dedf18493074b98012664f8fe27ca68d8aa576049012b400eac4cc6fb

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdee13689ed13adb3215ac8a5bd22c7eb213662b9e9ece88a612ceed9d7c3d51
MD5 2da3b4816377abd1acee6309598d4811
BLAKE2b-256 e2cccaee08222052d094dacb364487ff7cc0ee97fcf6fe2c2f44f4348e81d77b

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa23eb73c7e47085f6349804e133a4882b2868530b620ca255acc27526276872
MD5 72ba06e38bc5113a7d85f89ef17de980
BLAKE2b-256 a9877dc2350cdccdbc09b0345a688f6384c9bf8e9f2d1d4a0064a2eca4eb9747

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e67431b42cabd3febbba3248a9a17ac18ae4fc46994a2918502a4ed06ed5537
MD5 076b25eb6b235e2b0459481096cd6971
BLAKE2b-256 2a0c1fb59eb8af741aa7e20ce7e6d06c6a72816ac9f573d771b233e2a588407a

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for ctranslate2-3.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 10064a33dcf0fd427f27b9f37eb0901b8de71c36c66dfa29fee59afc150287ef
MD5 5b8fc1d9b3823a79884261bbf016d8a8
BLAKE2b-256 33dbec9de43004f41ff188ed0f6e469e54d296a785265dabb18bf93ad12848b1

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a94cc7027c7c386c38590a729102a2b8e79b2921660993b64947917ea52032fe
MD5 856365a497a46cec2bd098b0c1e7a7bc
BLAKE2b-256 7671bb6f226818dd053a624f8945d786c5af9b72bbfd89afe7e9570dff1bab53

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96b357d17e2d3cd2b33196c076380b6b1d718888e8ca23e91dcf5852af5421d2
MD5 c1957ca7671beca9d2268b561d909ac6
BLAKE2b-256 42c80a3c69b2666fb984a972093f4d7caa3de5603151c0737067691e31d02365

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48c280bb3146f1ca0fbdf91bd839326cadbb799e611bf70dfe4ff046688e67ce
MD5 80bc429939b5ac37242926bd2a8bc1f8
BLAKE2b-256 fc58256304097d323b23a0d3a64a808a95bef45c74ead03f070f08f2b7071b5d

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2dbedeaf47ae2915bdd123c7be0714b75b7b6abb75d01be3bf3101093564aca0
MD5 02c6a5de10ce94e616b7c9b1afe37f01
BLAKE2b-256 713c3067c4b38bbe571a9ebfbf10eb14e520739b7cd89f0af44137d071d7e1db

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for ctranslate2-3.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2800bee7b508533a05e0ab686c2185dbcf311b6a08d062e4a69218afc5434737
MD5 9643f25b37d09aa373f488692616044f
BLAKE2b-256 b72243eee0fe59c2e4cb4bfc83306bfa0bdbaa82337274fc82a3cbf71fabf689

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eab474da84f36e0624066003d793b1a5c86ec38bb625d719fc60987216b94a10
MD5 c010d8498b2147d8bed36ce5420856a4
BLAKE2b-256 5b22916d4f5d1bbd779e81357cfd27957d065640ecc34b4445c75a4cc9f50d6b

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9468a078f242ce7350dceb2b7024ba462f58d9b9c9e14cf68197ff454fb1cc55
MD5 5911e7eb7ee135a208e5e276c5c81558
BLAKE2b-256 da80c76cff7576f8404d2b04a22196aba1f55790ec78c36e81da534414b26819

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0cc21d567ee9abaf5bcd259f1d07057411464e96b6f63b1fa0de6bd857b56f4d
MD5 82d83478d9c5a7821d193c82d084243d
BLAKE2b-256 f2f2d08fa59148453db7167b195495c65b8eca5864e13f13b4310282ec8d28e2

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2b60e6ca12ce0721bc09379109e0ca68cf065678603c8e30d3963a0cd65ef88
MD5 d43e5e303521b0f2baa5595bd7149698
BLAKE2b-256 8a131952acc65afcfbdcd1b32b947a0aa09bb5d55d6f7524ccaf55e0d93e70c2

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ctranslate2-3.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for ctranslate2-3.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3927aa7f832fbfe77af8ae0b1007fe7aaa8f091da99bffa1223744f5bccd02d7
MD5 fe0e71eb2957ef2bc18f7cf31b0891eb
BLAKE2b-256 74948842d75872c0ddd746b778f620e7a3af54b35b369a9a0f6c7c5dd67f0fb9

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfddd8cad1176128a361a7836795f5836c74fc97bc7470a0cc65f03ece356cd8
MD5 aef005d6114aff1ef6c5e3af71d90bd3
BLAKE2b-256 751e22404217c6a011a74b8323186ef370d4ad0fdac141f9edc7d9683a723d1b

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09f223fc527c5cd6422b39a179d19373d16e4a06830723eb1d926ba6ac7d1e82
MD5 cdd94e496f9f1f650175e3cb24285dcc
BLAKE2b-256 a2c7a0d36b7b21796691ef238eb5c9469e415803531a128d0d4fb50f74312612

See more details on using hashes here.

File details

Details for the file ctranslate2-3.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ctranslate2-3.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9557035b33e9ddc00c71b1a6f0f8c9084ba5223607782de84499db71c3b585f0
MD5 d2472fa2c8503b3910f5da043ad16220
BLAKE2b-256 419ca43358202e32c8f4a41b896ae68b3d620177c21a59a99a6f1ca0d163ebf2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page