Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Purpose

GeoStatTools provides geostatistical tools for various purposes:

  • random field generation
  • conditioned field generation
  • incompressible random vector field generation
  • simple and ordinary kriging
  • variogram estimation and fitting
  • many readily provided and even user-defined covariance models
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation.

Citation

At the moment you can cite the Zenodo code publication of GSTools:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

A publication for the GeoStat-Framework is in preperation.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, var=0.6, len_scale=20)
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.threshold_percent(0.5).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field with 40 bins
bins = np.arange(40)
bin_center, gamma = gs.vario_estimate_unstructured((x, y), field, bins)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=40)
ax.plot(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.92, len_scale=8.15, nugget=0.0, anis=[1.], angles=[0.], alpha=1.05)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

gridx = np.linspace(0.0, 15.0, 151)

# spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
srf = gs.SRF(model)
srf.set_condition(cond_pos, cond_val, "ordinary")

# generate the ensemble of field realizations
fields = []
for i in range(100):
    fields.append(srf(gridx, seed=i))
    plt.plot(gridx, fields[i], color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField')
srf((x, y), mesh_type='structured', seed=19841203)
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.2.0rc1.tar.gz (12.1 MB view details)

Uploaded Source

Built Distributions

gstools-1.2.0rc1-cp38-cp38-win_amd64.whl (704.8 kB view details)

Uploaded CPython 3.8Windows x86-64

gstools-1.2.0rc1-cp38-cp38-win32.whl (650.2 kB view details)

Uploaded CPython 3.8Windows x86

gstools-1.2.0rc1-cp38-cp38-manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

gstools-1.2.0rc1-cp38-cp38-manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

gstools-1.2.0rc1-cp38-cp38-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8

gstools-1.2.0rc1-cp38-cp38-manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8

gstools-1.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl (713.4 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

gstools-1.2.0rc1-cp37-cp37m-win_amd64.whl (702.3 kB view details)

Uploaded CPython 3.7mWindows x86-64

gstools-1.2.0rc1-cp37-cp37m-win32.whl (646.5 kB view details)

Uploaded CPython 3.7mWindows x86

gstools-1.2.0rc1-cp37-cp37m-manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

gstools-1.2.0rc1-cp37-cp37m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ i686

gstools-1.2.0rc1-cp37-cp37m-manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m

gstools-1.2.0rc1-cp37-cp37m-manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m

gstools-1.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl (709.7 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

gstools-1.2.0rc1-cp36-cp36m-win_amd64.whl (702.2 kB view details)

Uploaded CPython 3.6mWindows x86-64

gstools-1.2.0rc1-cp36-cp36m-win32.whl (646.6 kB view details)

Uploaded CPython 3.6mWindows x86

gstools-1.2.0rc1-cp36-cp36m-manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

gstools-1.2.0rc1-cp36-cp36m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ i686

gstools-1.2.0rc1-cp36-cp36m-manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m

gstools-1.2.0rc1-cp36-cp36m-manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.6m

gstools-1.2.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl (709.3 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

gstools-1.2.0rc1-cp35-cp35m-win_amd64.whl (696.8 kB view details)

Uploaded CPython 3.5mWindows x86-64

gstools-1.2.0rc1-cp35-cp35m-win32.whl (642.5 kB view details)

Uploaded CPython 3.5mWindows x86

gstools-1.2.0rc1-cp35-cp35m-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5mmanylinux: glibc 2.12+ x86-64

gstools-1.2.0rc1-cp35-cp35m-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.5mmanylinux: glibc 2.12+ i686

gstools-1.2.0rc1-cp35-cp35m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m

gstools-1.2.0rc1-cp35-cp35m-manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.5m

gstools-1.2.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl (698.8 kB view details)

Uploaded CPython 3.5mmacOS 10.9+ x86-64

File details

Details for the file gstools-1.2.0rc1.tar.gz.

File metadata

  • Download URL: gstools-1.2.0rc1.tar.gz
  • Upload date:
  • Size: 12.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1.tar.gz
Algorithm Hash digest
SHA256 fba201faa17e6adf09ff6ba029fafbcccf9bf4b9a13176cc619e2ce595f6e9f7
MD5 7b8b571589961fe53d7db4a2c1b1ce52
BLAKE2b-256 e36c3c96629a8a2c74a33fc5ae627e0581c5b7e353cf6e496586cc9bd0582f26

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 704.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5b00aaa7567af0a8812942dedd102b8e9f4b6b139eeda3b906ab378eab8e5017
MD5 df04d6c23734ce5ac4f50797abac0bf6
BLAKE2b-256 17065192bd8795bd208418c407a49ff7406bea3343622c0f342a0bbb7c16973e

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp38-cp38-win32.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 650.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bf1dd3ad441f5baa9867124750d114558c930790ab72171439ccc9f01f49150f
MD5 2de11ed899b51a7cc5494e932d76a1d7
BLAKE2b-256 10ca53498bf80f40a147e686162053b0811c3c76f261cef2d8a41c97e2dbbe25

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 97e90e318521b787a50b8ad6e2310d17cb1ea0981a014bbcb304c9114e89e0e4
MD5 8d7c4f6b0f164b30aec4e68320fefcf3
BLAKE2b-256 18cc7c5c23832db0678faadb7dff82626bc904884b8954346733de643159ff57

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3847028c1e0ab5b2f18549b77222fe02acb16d8d0475122a83361e0f0783b861
MD5 e3cb51d8ef15dffbf6a952d2e06ae750
BLAKE2b-256 27379827b26c08074025c289412ac57ee008c66a2d18cc025f64f341d41bc56e

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 abb7104697c99df2d98aa6fac5702d0d2d393043126d32429e614fafe8e122a5
MD5 8f5634b0e7f6e7d8e4bb797e4aa45298
BLAKE2b-256 ada4dd97842589e9974c6587c9dc9120387c34a3ba3515197eba1ce4a6ec3feb

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 48b94b253a0249b9c5c6a20c4fac16d7d574e2ae3b7429240f9ff5aa170b3b35
MD5 a9f898345f5f5fb847dfd7615665eff9
BLAKE2b-256 c949fb0dc307a663912184be03d957b64f12d12c499ecd66c2527d2d9917919d

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 713.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for gstools-1.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 559c3adb0ce4845a7f0bba2ae876b63de3102b0b8b0b2f924f3c86fb3ee02cf2
MD5 220aec4e8584a1027dff6136fc900393
BLAKE2b-256 7bc9e93958134a21ab3f040cc5fed0f7d0e7c85eef92e46fa2f4082af4988dad

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 702.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 630fdf9e7fd70786cd49fa0ef55fcb84a47480a89cf828d8d006ef65da5430c9
MD5 6879a828a6577e29319ce8aaab8c6c72
BLAKE2b-256 320793cad5f71cb7fee5eb568f72dbc48015433b53fc16ed8413fe3459be7e55

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 646.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c0e12f15812fc7989742a99f917db62100b79f24e89e9cf59c39b213fac1c50e
MD5 da8b9478c48c02ea8bef249fe991d636
BLAKE2b-256 0eaf870fa1dc2d44bc402b31bb3b2c679b5993f261276cd1505d6f0769058d1e

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5dba35445b6210d7c97da1bd676b8c866f9e8783535d51120f4e1cb4471f2298
MD5 1446bb6dd6842a18e893808fdca2b344
BLAKE2b-256 e73bcdf0ce8d0272eb7318afc4af8a2f63e363700eb7bb406d1c63fcf2b94b4e

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0f1676d5ea2c43ade608d2678c990db884415f578c5252af11110218919d1e05
MD5 25eaf064764caab74867841c7ef4883c
BLAKE2b-256 f6591caa633d5062ab25e68ddef048b42fa4ae67b97f989802d289d9be110761

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7c59801f216de66d5d321eea81e336a65bde98d1976fe690fc3c74771b582c1d
MD5 7d1db299cd66f44c474e6ce1fea27bca
BLAKE2b-256 573457fd6f92394bb6d8d6e4f9ceac2eee569f4632505e6e274c883fa7010533

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e79baa8f89e36103896feb6aeee8b2a3e0c43dae3f5f4b525f3393e2234f97de
MD5 7067c23453d8830f75c9597724398fb3
BLAKE2b-256 b4464198837dd964a8f372d66c2942e61532d19a285d7bdc33f69952160da923

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 709.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for gstools-1.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3b52b6b6a9a13c6c947972c885228aa491188a8e8a96f46ea73f118f8f247a3
MD5 c84860c422178e42327eac992b69d2ec
BLAKE2b-256 09aa891225638ba9c135931d90e973f67f7973202891617cbf8e7693f584943a

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 702.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6ae2623dd578a32f741125d0091e4e5055848beaede4bc791b11ab6410892aa4
MD5 cced85c506594bdc1590f40bad49697c
BLAKE2b-256 d90040b4606efcae59637b5557cce5f3dd4cb305bdba356d8d8f85701706faa9

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 646.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3d7c9b5932d284b9e6c70d2b46ba956c60c5a229786a2318a596e7328d6f9c12
MD5 d18407b2b8362147c71123babb4c9b01
BLAKE2b-256 d32be2d853e2790b9f578a687aafdc6d945d342fa705d30ac1dbd61dd4e50b8d

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5212358e516df54efda167c6cc04ae86877eb2de6a34c67cead63622a6ee9e06
MD5 dcd8c73f00607e5a7fefdab35a5e4df3
BLAKE2b-256 186c145bd96cad170dccf37b42bbcf002556cea61fc6bcc1e6d7106d6fb5468c

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d2188c70e4350227f6a54dc8fa35a4bb0e811a29784e4b5386262b954df8dcb4
MD5 1b16b961577d6be532f8a925549d7f75
BLAKE2b-256 258895f9e142e7e068d6ea45375424924e14690dddaa9a4dd975f2f1a1c2288c

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 29e8ab9390cd24b2e4080db012f67fdd885a67bf39419266267ab00085f6fa45
MD5 8401acbac589f4b7e958724b0f79ac99
BLAKE2b-256 9224939ab84a8fde2034e058d67a672fa66803fedc8dec5432562a942cb75ebf

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 855e1e537fb0c27447e314bfa7442a415cea43725e2c178bf748584207732686
MD5 4a92c8860d5680ecb960091e2861c5b4
BLAKE2b-256 4eac41526b47893000a5b761652286730ac356443aaca8ab2d26c26d31fb239b

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 709.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for gstools-1.2.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04b54ce1ade5d1e4fe4e9a44a7efc85ceb0128f66b677f575e5b3adc9b2dac1e
MD5 b7633db3313f8db07b4ac06ece17bf3e
BLAKE2b-256 11f6b7af99ee73421f9ac0c38c95ec9d570333432d15275c1bebc7c07c915d2b

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 696.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 e04a7a66d57b413424ff32fe254a73994927185807a9e7029553d14d340f3bcc
MD5 2e714fa2b89ef5f30e3e856a27cb1261
BLAKE2b-256 b9f48d140647d17c878db25ba9886e7831e88bbf21106d0b1ecd0db793780223

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 642.5 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 9d1b5f9c358afef063b3a86d6b32616a200203f13a0248d4f2d95edde29b55b3
MD5 8d078d69dff13e13de40b1de0fdcb0eb
BLAKE2b-256 f6de48c35e59163567eaf111356f8e1d080a6ea93681452f30d74d487a444167

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61ab9bd6a9a3ccdf96a9dd07f925b899f0fb8ee0164b5e258c993e950e35f8fe
MD5 f3127badefa13960b6b3e5e9d27929a0
BLAKE2b-256 d037512e97c87d8738b23159d3fdf83abc880e42f1fe67a1425e64d1ca19e2ba

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 04259fc64ee70b6663d230dc6862d83277f43344782bc1fd44bf554e2fb9d1a3
MD5 8980ec9fee9d98b4273eb91bc1170c1a
BLAKE2b-256 68a86e7b86ad96eae1b5248e8df6a1de7ab71cc07c3a92d5813a5c2bd49818d9

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e94cba82c0fcf47fc2d48865b174d760b2e09e917eedaec286c632c507498d04
MD5 f521e89b8053bc2b659472000b207a5e
BLAKE2b-256 d70d65e238a85cc523aee37fbab6a1c799cd116fe2c3858c1e77a0fb12441e1d

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for gstools-1.2.0rc1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 197c7e199e22625d3a003f54bcac22645cdb858f39d76f82923b32af55ff0383
MD5 cb180021a831290c73b3d959bf41a166
BLAKE2b-256 ecedc0b71badb472adaa11012b4c2154f3d6239af5d5327029e84d65c74248f2

See more details on using hashes here.

File details

Details for the file gstools-1.2.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.2.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 698.8 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.5.4

File hashes

Hashes for gstools-1.2.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5da3439dda01cd88bbca45031bef7053bcf87c60d366a0f81e7d42b503040312
MD5 828bcc1b28ed02f68ceb8e166170d803
BLAKE2b-256 86488ee973e305939b4320716d1b651942d92d6c84cdf1fcef5f7a7d400f1bc3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page