Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email

Purpose

GeoStatTools provides geostatistical tools for various purposes:

  • random field generation
  • simple, ordinary, universal and external drift kriging
  • conditioned field generation
  • incompressible random vector field generation
  • (automated) variogram estimation and fitting
  • directional variogram estimation and modelling
  • data normalization and transformation
  • many readily provided and even user-defined covariance models
  • metric spatio-temporal modelling
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation.

Citation

If you are using GSTools in your publication please cite our paper:

Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: A toolbox for geostatistical modelling in Python, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-301, in review, 2021.

You can cite the Zenodo code publication of GSTools by:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)

lat-lon random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
# same output positions for all ensemble members
grid_pos = np.linspace(0.0, 15.0, 151)
cond_srf.set_pos(grid_pos)

# seeded ensemble generation
seed = gs.random.MasterRNG(20170519)
for i in range(100):
    field = cond_srf(seed=seed(), store=f"field_{i}")
    plt.plot(grid_pos, field, color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2021

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.3.5.tar.gz (115.2 kB view details)

Uploaded Source

Built Distributions

gstools-1.3.5-cp310-cp310-win_amd64.whl (334.0 kB view details)

Uploaded CPython 3.10Windows x86-64

gstools-1.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

gstools-1.3.5-cp310-cp310-macosx_11_0_arm64.whl (315.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

gstools-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl (339.7 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

gstools-1.3.5-cp310-cp310-macosx_10_9_universal2.whl (541.8 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

gstools-1.3.5-cp39-cp39-win_amd64.whl (333.2 kB view details)

Uploaded CPython 3.9Windows x86-64

gstools-1.3.5-cp39-cp39-win32.whl (292.3 kB view details)

Uploaded CPython 3.9Windows x86

gstools-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

gstools-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

gstools-1.3.5-cp39-cp39-macosx_11_0_arm64.whl (314.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

gstools-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl (338.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

gstools-1.3.5-cp39-cp39-macosx_10_9_universal2.whl (539.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

gstools-1.3.5-cp38-cp38-win_amd64.whl (334.6 kB view details)

Uploaded CPython 3.8Windows x86-64

gstools-1.3.5-cp38-cp38-win32.whl (293.3 kB view details)

Uploaded CPython 3.8Windows x86

gstools-1.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

gstools-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

gstools-1.3.5-cp38-cp38-macosx_11_0_arm64.whl (310.8 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

gstools-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl (334.1 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

gstools-1.3.5-cp38-cp38-macosx_10_9_universal2.whl (531.2 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

gstools-1.3.5-cp37-cp37m-win_amd64.whl (330.4 kB view details)

Uploaded CPython 3.7mWindows x86-64

gstools-1.3.5-cp37-cp37m-win32.whl (289.1 kB view details)

Uploaded CPython 3.7mWindows x86

gstools-1.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

gstools-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

gstools-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl (335.4 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

gstools-1.3.5-cp36-cp36m-win_amd64.whl (330.3 kB view details)

Uploaded CPython 3.6mWindows x86-64

gstools-1.3.5-cp36-cp36m-win32.whl (289.1 kB view details)

Uploaded CPython 3.6mWindows x86

gstools-1.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

gstools-1.3.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

gstools-1.3.5-cp36-cp36m-macosx_10_9_x86_64.whl (335.2 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file gstools-1.3.5.tar.gz.

File metadata

  • Download URL: gstools-1.3.5.tar.gz
  • Upload date:
  • Size: 115.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5.tar.gz
Algorithm Hash digest
SHA256 d332158f2608c85a1648028a79de06dd349beb8fbed60805f9ff3643c95740b9
MD5 4908de377e8567594a2481cdf1060b0f
BLAKE2b-256 ee41bc2eb6570d3b1df08dcbbb4e9dad9b29b281e770c311e83713a26c0d1c83

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 334.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 21e7651d5a33e26f4b2c9c671164f813cd7eb4504514cc6cee3b4cdde8cb5645
MD5 4f384d79763cda8bd8c0eada86c0676a
BLAKE2b-256 10903b2c7fa4616f7ae4b88e3d5860fcbab0317bfd29a3a9c684146f54c49500

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89c181064fcbbbbd6afdcf48d958d2a55f0efcc42a15fb383f81b88297025800
MD5 78010e96e481f2e11376cc8921713050
BLAKE2b-256 8b8cc1e70581b172e106dc36b6aa13da3cdcabc1e6cd1cff8d480e97c97a6fc8

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 315.9 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e4a985a8d0367925f01f61dd6a8cf5a2a9423db6b5bf87708bf70a4e90450329
MD5 bd0a4811a47c626af31ba7cf0739599b
BLAKE2b-256 5a30c83fd550fe9f011efbb62920ba31e756e57169271ab5f0f998a9d1065f5e

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 339.7 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07e03fbe236273154f77b5aba9a27f540599cb28a4d3e58861cdc919760c32f7
MD5 c772dabb5ebf4e233e46ecca38e49558
BLAKE2b-256 cafca3c10b6493e4479330aa4c7d30008f61e178dc6b1ae30569234a48226992

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: gstools-1.3.5-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 541.8 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 28cd9502da35deafd9656354e0e8d2248ceb0a64ba658083d0eb301805dafe68
MD5 530dfc1b14659a236ca79b0567d3f237
BLAKE2b-256 b3e5080f039a7d1a5da581249b85aa759106809c7e40cf7f1581ede06059666b

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 333.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5c1deb92a153d7ffd79f8d34190179b75c5df50976dcbba0a789692f2b16f604
MD5 a80552bb68395810e05c8407ede86c6a
BLAKE2b-256 b9584ece7b83a2b6a6f81ffdb4d5efb51ec9feb7e5a4fb6905312a39c2db77cb

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: gstools-1.3.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 292.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1f0cc560bb96b993c953b342b2e2b037adf039ab8e5aac5ad422b3a5491be440
MD5 c360c9d1fecbd19013d480347ba80455
BLAKE2b-256 7479d438595d1d804f89e2fa64d9aa5c79efe3f8248f7894f1f553033c3b8eb6

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 575aeeda68aecb81c6b57035338a2b9503cf6dc221dce8fcbed33e51bb62c4c8
MD5 d9c70a0d193d6283b61c94dc6c5a6e09
BLAKE2b-256 3d1dd15804564c426859caf5194c42a2e32afb07b91436c4a25e9b03ac8e3538

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6ee1388d2f28c6d4a5669413175f2fef42cf20d33f09bf6439dd7b90e82a2b3
MD5 e15d7927a994f463bf3e5dc9f202aee6
BLAKE2b-256 d181fa46d93e09db689c6423a91c625333c70b1dd7e0c917c991ddc3267985b0

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 314.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9dc3f0fe1c566d93a4e7e170a8b703c8a10eb4d14699e15da0d8fefbbc7c07e8
MD5 2e47c0ce053b009c55b14ef7722283c2
BLAKE2b-256 447ce1fcf1e7a98bfacefbc2f9080827c2a875425686fb5cd68e43e404f1cafd

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 338.3 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3774bb53cc7e5767db321ae393096f59c80fd17e82856a24656fd096601cde28
MD5 8193bc9da228a45360d884b09a25d67b
BLAKE2b-256 6a71a1a41a35a86b73af5174665372e66ba7ce9112cced16fe6f4bb44908a019

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: gstools-1.3.5-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 539.3 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8b4eb21c16ad43c46613cb9761d57aa30a5e55716146edf3c6c57f19118375e3
MD5 5b411d6f87dcb2e06062ee400a1c0cce
BLAKE2b-256 917ccd6573f2b2ff5e9a1268879968723dbaf471a64d2e93dc4d0f8e42791cf4

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 334.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4cd646f947ebe9b0a9493a2c229757ea4768c337402e9f0e6eb5bd7df4f78151
MD5 a39593fb9fed0b8046e34c2ff3778457
BLAKE2b-256 cf2b628668d62fd7132460b75e9c189ff0d75b1b9ee1074756f7a34838ec76b6

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: gstools-1.3.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 293.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a4686f1735ebfbf0737edb122a711e7981ef0f57696f25a68e53f4ac7c1f0a12
MD5 83016577fcc56cc0523836833b0627e1
BLAKE2b-256 7f8eb2e7265f3c7b41b08446add41835311ab753ab8f94474f9b9da012ce6391

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e65e2a29c4149978ef28f1be35ddad6a6a4d443df7656432ea4c6bce1af78d1
MD5 f3f6a6079794d73b0c8f514e6cff249b
BLAKE2b-256 209fc44f550058c0d44c34f099c83bfe8203b3291b1789f5618b42687ff65433

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 89483a14bcae51c95e1702bd2fbfa28b60a4e7f5cb2dc19c77e6062d3718d23f
MD5 28471a6b0ad7de001b3c86637cf86f22
BLAKE2b-256 6c185a232842504e6b507fecccc4f73f9f73ed36ec425cb738433524c0bd0493

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 310.8 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd8411aa1ad004f46443201991b96969ede910d0e69de7679914255614343f54
MD5 638a0e3f3070c90f5775bd2a42d64198
BLAKE2b-256 24978ac1237cfdba2a1b5d4b6e105fe0cb82e4d1f3d9b35257ca5424cdeed6e9

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 334.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ede929a5381dd3e119a4f7b62ab2e4d1819c2f86e88d778a87a2a093c4d04f10
MD5 22ed047e7f6467ce1cad98d1742724ed
BLAKE2b-256 34da0c40aa054db52e6183ec7734dfdb7f2a8023bc455dd8e140b58b4e4b838c

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: gstools-1.3.5-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 531.2 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 adc33da7fee033d611601a27a179b800805c2e94fb5dc0032f2cc19be8468d5b
MD5 ec30f6aa8cb7570bd6041329994946fd
BLAKE2b-256 71fcfca139d98ee1c373b3e313e0639f9ba5f1f2c5f5b1d030a1f189cef6ac83

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 330.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d01c3b1433a27adb5c925898e169e1961ce5cee611c0ede19e3595ad3e320ac8
MD5 0b66b0d69c1f17adc56c34e5b322e24f
BLAKE2b-256 f6bef02b4ad1f63f8b21edb3d6bfdf30a84f4fe471b95d31d276bb1b87b9dd7d

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gstools-1.3.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 289.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 16a22f1c3209996f0b7163f6512acaa664e88aa846f2ab0fc5044e9ee9345041
MD5 2399159c7f82d9dd2f50cb9e3bae4380
BLAKE2b-256 91c6a78d13c583642518936466f813d3c3b5b8498f1ad3fe2923a10cdc8357d8

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a83946bdf696fd457fb09384ee06fd1f52d2098698c2352500432c9a32d2af7
MD5 f30064b05b55aa082a9f46b7ae2af314
BLAKE2b-256 6d26a78cfbcad1b42a8ad45d3767dd96d41ed5907e2b25155c210186e5f847bc

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c6d3abf1b75b08b4fa210c4058317e448fbc938afa98f2155a505728ce7e66f3
MD5 75ef55ad97eb26ac9a07aa5591a4e456
BLAKE2b-256 9a0d03b46995838e4fcb7736cc85f826a69382527fdcf581f6f386e16e92005d

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 335.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fdebca882b703a5d30de5f06b75219f1b7346352769fe0c31000e10f0bab7ee6
MD5 bf8c00cc8cbc3792ca91d9409d8077cb
BLAKE2b-256 132cb9b5393a06adb7e56889b655f8acf7b5fe97d43275a2711edc27524f1970

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 330.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9f7b1374089f541774d11f9ca3665bd23b81ac659a58f2c447eeae3ff56c7194
MD5 6799006e3f3ec508c1c85c2bf5e023e5
BLAKE2b-256 2f0ca0a019f0a0c6bdedba34fdecfcba95a5759d9c626f9bbffd6cbeb35a46e9

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: gstools-1.3.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 289.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6607d14d98aa118c3c4e9afd44f14e20435258f785044cb47f8589940427b5d1
MD5 7633aeb57a550220c46d2b8cd1f2f566
BLAKE2b-256 4e17463818be9fe5c3027807bf4575dc57eb72e9a42503ff58f70ee82f9a0883

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a5f4a59b0d1b0089eb7e5787103f264bd38482a0db27a0bc9d643468710f322
MD5 b58fbaa8b58c989d3920bb41d0c0fff4
BLAKE2b-256 b32829fe8a99098ae8bda94846673decb20cc5610274fcf550eb83225ee16e1b

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gstools-1.3.5-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba084e9e1e194e2d1fb33245ebf816822fbd4dd9549edc1a38d5160ab30b40c4
MD5 d95e1c41068c415b7def80ca469b36b7
BLAKE2b-256 2a385a5888c1f8ded0868a3583e0c5060386868f891755f861e44885ac7ba3e4

See more details on using hashes here.

File details

Details for the file gstools-1.3.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 335.2 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for gstools-1.3.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92a61018112578539fb3cf62197d4c8427eb1d329fbbd266bfabebd8e73ab8e3
MD5 125c6a8c3a95710f2e11a589c7c9e9a5
BLAKE2b-256 3603c5e30a0a9a7ae50d67eab641de94f58b19d7df9096327fafbd6d603375cc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page