Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Purpose

GeoStatTools provides geostatistical tools for various purposes:

  • random field generation
  • simple, ordinary, universal and external drift kriging
  • conditioned field generation
  • incompressible random vector field generation
  • (automatted) variogram estimation and fitting
  • directional variogram estimation and modelling
  • data normalization and transformation
  • many readily provided and even user-defined covariance models
  • metric spatio-temporal modelling
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation.

Citation

At the moment you can cite the Zenodo code publication of GSTools:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

A publication for the GeoStat-Framework is in preperation.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)

lat-lon random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

gridx = np.linspace(0.0, 15.0, 151)

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)

# generate the ensemble of field realizations
fields = []
for i in range(100):
    fields.append(cond_srf(gridx, seed=i))
    plt.plot(gridx, fields[i], color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2021

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.3.0rc2.tar.gz (104.6 kB view details)

Uploaded Source

Built Distributions

gstools-1.3.0rc2-cp39-cp39-win_amd64.whl (325.8 kB view details)

Uploaded CPython 3.9Windows x86-64

gstools-1.3.0rc2-cp39-cp39-win32.whl (284.2 kB view details)

Uploaded CPython 3.9Windows x86

gstools-1.3.0rc2-cp39-cp39-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

gstools-1.3.0rc2-cp39-cp39-manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686

gstools-1.3.0rc2-cp39-cp39-manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9

gstools-1.3.0rc2-cp39-cp39-manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9

gstools-1.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl (330.2 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

gstools-1.3.0rc2-cp38-cp38-win_amd64.whl (326.2 kB view details)

Uploaded CPython 3.8Windows x86-64

gstools-1.3.0rc2-cp38-cp38-win32.whl (284.4 kB view details)

Uploaded CPython 3.8Windows x86

gstools-1.3.0rc2-cp38-cp38-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

gstools-1.3.0rc2-cp38-cp38-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

gstools-1.3.0rc2-cp38-cp38-manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8

gstools-1.3.0rc2-cp38-cp38-manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.8

gstools-1.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl (323.7 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

gstools-1.3.0rc2-cp37-cp37m-win_amd64.whl (322.0 kB view details)

Uploaded CPython 3.7mWindows x86-64

gstools-1.3.0rc2-cp37-cp37m-win32.whl (280.4 kB view details)

Uploaded CPython 3.7mWindows x86

gstools-1.3.0rc2-cp37-cp37m-manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

gstools-1.3.0rc2-cp37-cp37m-manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ i686

gstools-1.3.0rc2-cp37-cp37m-manylinux1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m

gstools-1.3.0rc2-cp37-cp37m-manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m

gstools-1.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl (325.7 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

gstools-1.3.0rc2-cp36-cp36m-win_amd64.whl (321.1 kB view details)

Uploaded CPython 3.6mWindows x86-64

gstools-1.3.0rc2-cp36-cp36m-win32.whl (279.9 kB view details)

Uploaded CPython 3.6mWindows x86

gstools-1.3.0rc2-cp36-cp36m-manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

gstools-1.3.0rc2-cp36-cp36m-manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ i686

gstools-1.3.0rc2-cp36-cp36m-manylinux1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m

gstools-1.3.0rc2-cp36-cp36m-manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m

gstools-1.3.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl (323.8 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file gstools-1.3.0rc2.tar.gz.

File metadata

  • Download URL: gstools-1.3.0rc2.tar.gz
  • Upload date:
  • Size: 104.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2.tar.gz
Algorithm Hash digest
SHA256 1520c99075ab2750cf41f442d47b95568dfc0f99f423ba4a5ebcd1ff2d20a806
MD5 c543a93384f943084212bcf16846b984
BLAKE2b-256 74e451feb862be09b4e7d6c0c65c4ab7f6526ea9db4510fcfea96f7b60a47dda

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 325.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7042df85d28ecdbfc1b33d6a5e465e28637c71dd0c70c2f159bdb2a628453317
MD5 f1c12764b318b00001b66dde8a1a22a9
BLAKE2b-256 7a2b8fd5ac8f5225acaa43a28d2bfc9e9eeeb891f4b6e3e498fc7edf6040037e

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp39-cp39-win32.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 284.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4346488d5227564d7d0c6814dff13edb4a3bf6b26ed1dec835ee5d261208264a
MD5 c0cba13215d337fee700b0f5b1d486a1
BLAKE2b-256 29ee6dc0ad551a4010f82058f767b8885079eac90e52aa1b0560d478e183fc97

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9c08dc4fce8abb024a1fcb19d18aa0024659812bc6c98e6cef97e06505f84dc9
MD5 a65d5f62ce2b7552bb6e20e33ba17d14
BLAKE2b-256 ef9f7de854d0a12c9c2197fc6379b460ba106234135baaa6252c1ca95b97220c

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ec7960640c9bab367a3273436d9e71178fc190baae0de06525ed97ddfb48737a
MD5 7ca6e521d64778001df962bebe0176d5
BLAKE2b-256 fb99cf6efb42667fd1792347ce15ae242b6a56352fa6f40aeebae1b5d37d5f0b

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 29ef8a55c52cd5e8083121ae9e66d450365d2423420f79d6d9cf5eb7e72b9d50
MD5 655ada6263b1089b13bfeafeb563f940
BLAKE2b-256 91bd582212b6604806ed2677d7092e0bc6ae3c1d9a9f80e58a0b9dfc385f1938

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e62fe6abb815ffeb2a83e919fb6ebde6005736b8a7ea8cf80c7759cf247e2051
MD5 3bd5d01a6d55f7dac8687859d4e587a0
BLAKE2b-256 a4950d34d7acba68cd24c812778d3bce502bb12821e622012d600fef6043b3a8

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 330.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23792c42412a4914bd892e9f117f50af3632c1236cbc992fb14a0aaf04ef7ac8
MD5 50d3bdee4e6dc5f1e265601307fe6112
BLAKE2b-256 aac2dce0d4dbb72d1a4845cc89d959e5080e8d15c3a4b871cd93b49f99f307ee

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 326.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 319161f23eaeefcea79d348c549b9b15ee1551a121183c18bf8546b3783f59fc
MD5 3d29b86fbb96584f7ea58e98bc25897d
BLAKE2b-256 7eefafc1ae2cff3546274ed775b2049c48f10eb9b481f09be5d790d5c51c289e

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp38-cp38-win32.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 284.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5a8df157c313b7048903bf51de391a834ef411b5db5c1fa9000a043cb590c770
MD5 6c835cf1eddf7b613067f83faace0581
BLAKE2b-256 2e6e965731784e8851a2b68666ce0006dea222c7449569812418818b4dd61197

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9ef3ec52c4d8d02b7224c8e0d925cd1744f3f5d943071d121c1d3009c0eb1815
MD5 2308c04dd176c7335118115344efb5cf
BLAKE2b-256 d8f3e9c5a995d8ff31871c1c67a4d04b9840017f3f1d657ce25d6d35d7fe5491

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1614259010b4067eb66266e6408fe39dd9c9d53fc95f0b212430295f1462c16c
MD5 fc82648f7f3b5c44e428d954eb4e2c38
BLAKE2b-256 182a74e53b235ae071040c8a68a2593c68ef7fb920ccae596671dfc83869130d

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6cc3ef568493b301b2bfdaa23ffef98313f3445d69d50c9a1a11390f85176bf4
MD5 652aaf60dc79d13f95e1f482a62ae953
BLAKE2b-256 1fcb55e4f4b0d5ccafaebba050da8cb39dcd379858fa3fbfe21bbdd9bb5bfe09

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2483a82baf211a20e95a3d91d15c146c4d4dc06ea0bd621b48d7bf73d4591fd0
MD5 e09b355609983b441864b68985eecab4
BLAKE2b-256 a6e30da19f601a1e9808d54547792c54ee743e7cdb4d5bf2ef741e271cba95e3

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 323.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57a38ff2d9d457505b0f73566275193c239d13c2e590a02d3c0b0a4b22bd286f
MD5 f8200344f7a0438a045b1d6c4b08492f
BLAKE2b-256 fd32795042b870f7a38fc404aca4e4adfb56faa9c50efbd5e7d2cf528181b1bc

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 322.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4e2347b05bc76704ccac708d839847f22ebd3aab8ed75fba559e1ba77c616c7d
MD5 07945ab607c01ed23144971c04c7e750
BLAKE2b-256 2858a3139cd95269fc4903998407288f21892904aaf35e0796c580271b7d046a

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 280.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5cd3b4a751831a0aefabde3eb0f093a9d3792b7594fb916bfbbb0a53b255663e
MD5 0421941251888acb50bfb75803df77fe
BLAKE2b-256 93d53723d0a601bb4c329f6aa8c6d0676891a213f9c6b48d7c32b359d4581f73

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fbe16c1a3a6be82130d309d9500968762ce68215525aa80bf6456a55d2faa0a5
MD5 965a76e3cfb701b41bbc3f7883a11ec2
BLAKE2b-256 71fb168825bfe1c198efcb1824e1c2956b345bfc7243ad3abd09173607e654be

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 52cf2c2a70e231bbd96925b529fe09f8fc0ed529cc7fb9d7c90cdc1ad03898f1
MD5 dde98b2b9219f613b06c546d1985b08d
BLAKE2b-256 f337412dba20b91b3dcbc047be12e11329e68906fd31dfb0af41c75de68b2ab7

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b819706790ebf64a3aa68e5098093e17b81045f72e18d10b7793665676e70199
MD5 e2e548054cec690c49f8f334d981b669
BLAKE2b-256 888812b83e12705747f4a52b5aee419fea3c88100c92554ffabdc3bacf6a8d91

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cfb5a44e4cf55fba931b36d870fe1f2f4cb43b3e43b7e023f763ce042c710227
MD5 67bcfe3d145908b512780661b720fd5b
BLAKE2b-256 3dd193f79838e57df4095b22a33b6b0ee65a0005b41fad4667e69161bf7e2195

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 325.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcb2d5d095bdd22fb658860db929f9a086f6521080397270a57397c426e50212
MD5 927702344326ff3f532b3acde1ea506d
BLAKE2b-256 0b73b9a94a799fb18b2ac4c56101d09bea575c08f34b4355cdd7e362135859b0

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 321.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fbf56b9385fee47c0ecdb05a2803e90479d6f17bb178bad0a0fa697fb39ea9c8
MD5 d162835f54fd4a0dfab25db80b007cc8
BLAKE2b-256 419aca6c610d00da56ce086d51d83d9e70f531ae699529abc84aa34c53941ddd

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 279.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 7f1a0cefe8f7e56e22f5c8283030589c76d38484ab5a3af80563373971e5f7dc
MD5 3db1945c1af5003dcdbfbf3d8c111706
BLAKE2b-256 c839ae5e29250e8278575c78443e20c740545d877f794ec50d43e31708184b8c

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e4d0b0d5600e1233f13bc41b480ff325ffbf6eed04572eee42754bfdd5f49efc
MD5 99906025ff5b0e91a96889205ade7688
BLAKE2b-256 78188f9698ce87647742a8331a9e733ba4c3a8aa6cc584c8e6c3f89aeaf94548

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 631c4c562726c420f0b4b635f0ed111b49029096e50c212d6661f401b08dcd13
MD5 afc95b00a2d4c55ff3dec1969e4f3435
BLAKE2b-256 61c6899d7995a5e9825e5900cff79aa6426e51b03905ed02beb4836dfd9a5f87

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1345ee0e3f19c297a489c6e1e339063e60f82ca33131088542201f9b4029a1a
MD5 0cbb27a321f862e99a176c1872e3df32
BLAKE2b-256 ba0de6431287292e3c377296935215eb54f7efb86364529f0913ac3701960238

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 858ee935af968a04437b2aa7137533820eed860dd2a714bffc18c440346e8183
MD5 a2f98f4996ff2811a2531fffaa70eb13
BLAKE2b-256 ecd7a888205da7121044bcc39fb3bd2cf4d28b66d7e9bdee97619e13f503244f

See more details on using hashes here.

File details

Details for the file gstools-1.3.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 323.8 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for gstools-1.3.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c99657eef23529da80f476976d000c59703fbd8d1474351bb3cc0f26c463a11
MD5 efc37304c88e8fb631f0dc7c414764f1
BLAKE2b-256 2c3a83ae7664422d209ed082642f5820eaa4b644abc49d5ade41df43d56125e6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page