Skip to main content

MHC Binding Predictor

Project description

Build Status


MHC I ligand prediction package with competitive accuracy and a fast and documented implementation.

MHCflurry supports Class I peptide/MHC binding affinity prediction using ensembles of allele-specific models. It runs on Python 2.7 and 3.4+ using the keras neural network library. It exposes command-line and Python library interfaces.

If you find MHCflurry useful in your research please cite:

O’Donnell, T. et al., 2017. MHCflurry: open-source class I MHC binding affinity prediction. bioRxiv. Available at:

Installation (pip)

Install the package:

$ pip install mhcflurry

Then download our datasets and trained models:

$ mhcflurry-downloads fetch

You can now generate predictions:

$ mhcflurry-predict \
       --alleles HLA-A0201 HLA-A0301 \
       --out /tmp/predictions.csv

Wrote: /tmp/predictions.csv

See the documentation for more details.

MHCflurry model variants and mass spec

The default MHCflurry models are trained on affinity measurements. Mass spec datasets are incorporated only in the model selection step. We also release experimental predictors whose training data directly includes mass spec. To download these predictors, run:

$ mhcflurry-downloads fetch models_class1_trained_with_mass_spec

and then to make them used by default:

$ export MHCFLURRY_DEFAULT_CLASS1_MODELS="$(mhcflurry-downloads path models_class1_trained_with_mass_spec)/models"

We also release predictors that do not use mass spec datasets at all. To use these predictors, run:

$ mhcflurry-downloads fetch models_class1_selected_no_mass_spec
export MHCFLURRY_DEFAULT_CLASS1_MODELS="$(mhcflurry-downloads path models_class1_selected_no_mass_spec)/models"

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
mhcflurry-1.2.2.tar.gz (57.4 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page