Skip to main content

sqldf for pandas

Project description

pandasql
========

<code>pandasql</code> allows you to query <code>pandas</code> DataFrames using SQL syntax. It works similarly to <code>sqldf</code> in R. <code>pandasql</code> seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or <code>pandasql</code>.

####Installation
$ pip install -U pandasql

####Bascis
The main function used in pandasql is <code>sqldf</code>. sqldf accepts 2 parametrs
- a sql query string
- an set of session/environment variables (<code>locals()</code> or <code>globals()</code>)

from pandasql import sqldf

Specifying <code>locals()</code> or <code>globals()</code> can get tedious. You can defined a short helper function to fix this.

pysqldf = lambda q: sqldf(q, globals())

####Querying
<code>pandasql</code> uses <a href="http://www.sqlite.org/lang.html">SQLite syntax</a>. Any <code>pandas</code> dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.


>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
date beef veal pork lamb_and_mutton broilers other_chicken turkey
0 1944-01-01 00:00:00 751 85 1280 89 None None None
1 1944-02-01 00:00:00 713 77 1169 72 None None None
2 1944-03-01 00:00:00 741 90 1128 75 None None None
3 1944-04-01 00:00:00 650 89 978 66 None None None
4 1944-05-01 00:00:00 681 106 1029 78 None None None

joins and aggregations are also supported

>>> q = """SELECT
m.date, m.beef, b.births
FROM
meats m
INNER JOIN
births b
ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
date beef births
403 2012-07-01 00:00:00 2200.8 368450
404 2012-08-01 00:00:00 2367.5 359554
405 2012-09-01 00:00:00 2016.0 361922
406 2012-10-01 00:00:00 2343.7 347625
407 2012-11-01 00:00:00 2206.6 320195

>>> q = "select
strftime('%Y', date) as year
, SUM(beef) as beef_total
FROM
meat
GROUP BY
year;"
>>> print pysqldf(q).head()
year beef_total
0 1944 8801
1 1945 9936
2 1946 9010
3 1947 10096
4 1948 8766

More information and code samples available in the [examples](https://github.com/yhat/pandasql/blob/master/examples/demo.py) folder or on [our blog](http://blog.yhathq.com/posts/pandasql-sql-for-pandas-dataframes.html).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasql-0.2.0.tar.gz (22.6 kB view details)

Uploaded Source

Built Distribution

pandasql-0.2.0-py2.7.egg (25.7 kB view details)

Uploaded Egg

File details

Details for the file pandasql-0.2.0.tar.gz.

File metadata

  • Download URL: pandasql-0.2.0.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.2.0.tar.gz
Algorithm Hash digest
SHA256 f9a3457537ae9dd0688426fb82a3aeb6b2d3d78c982bd6ae308e93050127796c
MD5 ec66233d9bd0ba40728919448a2c84a6
BLAKE2b-256 26e44942cb6952ba86898b63f1be019ab96f8a7ee86a0e35becda8f3d927147a

See more details on using hashes here.

File details

Details for the file pandasql-0.2.0-py2.7.egg.

File metadata

  • Download URL: pandasql-0.2.0-py2.7.egg
  • Upload date:
  • Size: 25.7 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandasql-0.2.0-py2.7.egg
Algorithm Hash digest
SHA256 4bd6e9b1e2a485588ab3401698cb48e7aaa6c22da85ae226464b3a4e9b361bbe
MD5 831b21b61b8820cf461395f01b42e35e
BLAKE2b-256 72e1cb5ad981c4202aad6b01bc44649960b18d482461749578be164f71822603

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page